

Aeternity node architecture

Ulf Wiger
Dimitar Ivanov

Structure and build

● Non-distributed Erlang node
● rebar3 build strategies
● Common Test suites
● Docker build support

– Used not least in system_test

<root>

apps

config

aecore
aeutils
aevm
...

_build

system_test

Extracted apps:
● aeminer
● aebytecode
● aeserialization
● aestratum
● ecrecover
● enoise
● mnesia_rocksdb

The ’setup’ application

● Controls location of data
and log files

● Dynamic expansion of
application env vars

● Fine control of system
initialization order (next
slide)

From config/sys.config:
{setup, [
 {abort_on_error, true},
 {data_dir, "data"},
 {log_dir, "log"}
]}

From aecore/aecore.app.src:
 {env, [
 {exometer_predefined,
 {script,
"$PRIV_DIR/exometer_predefined.script"}},
 {exometer_defaults,
 {script,
"$PRIV_DIR/exometer_defaults.script"}},

https://github.com/uwiger/setup

https://github.com/uwiger/setup

System start order

● The ’setup’ application runs
initialization hooks when started
– The hooks are locally defined in

each .app.src file
● Numbered MFA hooks executed

synchronously,
in numeric order
– Order within a numbered ’phase’

is undefined

From aecore/aecore.app.src:
{'$setup_hooks',
 [
 {normal, [
 {110, {aecore_app, check_env, []}},
 {110, {aec_dev_reward, ensure_env, []}},
 {110, {aehttp_app, check_env, []}},
 {110, {aec_hard_forks, ensure_env, []}},
 {110, {aec_mining, check_env, []}},
 {200, {aec_db, check_db, []}}
]}
]}

From aeutils/aeutils.app.src:
{'$setup_hooks',
 [
 {normal, [
 {100, {aeu_env, read_config, []}}
]}
]}

Configuration and environment

● aeu_env:read_config() (phase
100) reads the
.[yaml|json] config

● The check_env() functions in
phase 110 read and
cache/optimize env/config

● The aeu_env API has evolved
over time
– Lots of legacy env var handling

around

From aeutils/priv/aeternity_config_schema.json

Example of ’evolved’ env checking

● aeu_env:user_config_or_env()

– First checks the user config
– Then app environment
– Then hard-coded default

From aecore/src/aec_metrics.erl

JSON-Schema Syntax Check

● The jsx parser doesn’t give informative error info
● Suggestion: If schema fails to compile, paste contents into

something like https://www.jsonschemavalidator.net/
● The aeternity check_config <config> command will

run a schema validation (no helpful syntax check)

https://www.jsonschemavalidator.net/

Database initialization

● Mnesia is listed as load-only
in the relx ’release’

● Started explicitly from aec_db, called
from aecore_app:start/2

● Aec_db:check_db() was previously
called from start phase 200

– Prepares database backend
– Checks existing db
– Possibly creates empty db

● The mnesia_rocksdb backend is
maintained by Aeternity

From aecore/src/aecore_app.erl

From aecore/src/aecore.app.src

(More on metrics in other presentation)

db:check_db

Jobs: Load regulation

● Principle: Regulate load at the
edges of the system

● Jobs puts requests in
designated queues
– Then pulls jobs at configured

batch size/frequency
● Some queues can be tweaked

in user config
● Queue API: aec_jobs_queues.erl

From aecore/src/aecore_app.erl

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

