
AEyeWitness Prototype
Pavel Laskov, Anastassiya Nikitina, Kevin Lange

Module Structure

Figure 1: High-Level Design of the application

Module Description

Front-end

Functionality: The front-end enables authorized users to take images via the camera that will then be

sent together with the meta data from the user to the backend server. In addition, users can request

the stored images from the backend to view them in the front-end. Users are charged for storage and

retrieval of images (standard STORJ charges) as well as for using the hyperchain. Whenever a frontend

retrieves an image indexed by its hash, the image hash is re-computed and compared with the original

hash stored in the hyperchain. The verification guarantees that the image has not been manipulated.

Implementation: Progressive web application written in Next.js

Back-end

Functionality: When the backend gets a request from a client for storing the image, the hashes of the

image and the metadata (geolocation and timestamp) will be calculated and written into a transaction

on the hyperchain.

Figure 2: Transaction on the Testnet with the hashes of image and metadata

Given the hash of the transaction on the hyperchain, the image and the metadata will be renamed

according to the transaction hash and then written to the STORJ bucket of the user.

Figure 3: Uploaded files on the STORJ bucket

Whenever the backend receives a request for downloading images for a user, it loads the images

together with the metadata from STORJ and sends them to the client to display it. In an additional

request, the image and the meta data will be verified, by means of requesting the payload on the

hyperchain for a specific transaction hash and comparing it with the hashes of the downloaded files.

Implementation: RESTful API written in go programming language

AEyeWitness Hyperchain

Functionality: The hyperchain contains simple transactions documenting adding or removing certain

files in STORJ.

Implementation: AEternity JavaScript SDK

STORJ Network

Functionality: The back-end maintains an account with a STORJ network satellite (or a set of satellites).

It supports three primitive data operations: storage, retrieval and deletion. The respective requests

are forwarded to a satellite; necessary accounting is carried out.

Implementation: libuplink library for go programming language

Operational Examples

Our current implementation demonstrates the complete functionality of the prototype except that

AEternity Testnet is used instead of a hyperchain (still under development). The following examples

demonstrate images uploaded to Storj and recorded on the Testnet for three potential scenarios:

correct image taken from a mobile phone and metadata (left), correct image with manipulated

meta-data (center), and a manipulated image (right: original image was replaced by the picture

taken from the Internet).

