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Abstract

In recent years smart contracts have been developed within the blockchain technology as a
trustless tool for managing digital assets, many of which are of considerable value. Due to the
nature of blockchains, smart contracts are vulnerable to bugs, because once deployed, they
cannot be fixed. This can have wide-ranging financial consequences, as cryptocurrencies and
NFTs rapidly gain popularity. Therefore, a great need for meticulous audits emerges, so the
vulnerabilities can be found and mitigated before they cause harm.

This work presents liquid types as a method of computer-aided verification of smart con-
tracts. The analysed implementation named Hagia is an extension of the type system of the
Sophia language, which has been designed for smart contract development on the æternity
blockchain. Liquid types have already found application in many projects written in func-
tional languages such as OCaml or Haskell. The presented algorithms and discussions provide
a framework for understanding the key concepts of the liquid inference, use cases and the ben-
efits of the proposed solution in the context of smart contract development.
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Chapter 1

Introduction

1.1. Context

In the last two decades, the blockchain technology [37] has emerged as a revolutionary ap-
proach to business [41, 43], web services [54] and documentation of certain events, such as
ownership transfers [61]. Many famous features and use cases of modern blockchains highly
rely on smart contracts [28], first introduced at 2013 as one of the main features of Ethereum
[62]. Smart contracts allow performing a variety of actions related to cryptocurrencies in a
zero-trust manner making them a widely practised way of making anonymous agreements,
trading, and more.

The invention of smart contracts gave birth to a new programming paradigm. As ex-
plained in the upcoming sections, decentralised applications have very specific priorities re-
garding their implementations and take into consideration issues that are usually not present
in classical computer programs. One of their most prominent value is having very defensive
code, first aim of which is to reduce the number of errors and unexpected behaviours as soon
as it is possible. While it is important to virtually all programs, smart contracts rely on
it exceptionally strongly, because they are impossible to be fixed after deployment and the
causalities of bugs in them can be frighteningly expensive.

In this document we present Hagia — a liquid type refinement system that supports
verification of smart contracts written in the Sophia language [40]. Hagia has been written as
an extension to the Sophia compiler and its code is available on GitHub1. This dissertation
focuses on its implementation and application for the smart contract development, along with
the theory behind it.

The following sections familiarise the reader with the idea of blockchain and smart con-
tracts — first in a more popular context of the Ethereum network and then moving to the
case study of this work, which is the æternity blockchain. The next chapters introduce the
Sophia language, discuss the need for advanced type systems and present liquid types as a
solution for the most common issues of smart contracts. The chapter 4 explains the main
algorithms and logics of Hagia and presents the source code of the most important functions.
The detailed implementations can be found in the linked GitHub repository. At the end there
is a presentation and discussion on how Hagia enhances Sophia and what is its value for the
ecosystem of æternity.

1Please refer to the related pull request at https://github.com/aeternity/aesophia/pull/334. The
whole source code of the upgraded compiler can be previewed in the forked aesophia repository at
https://github.com/radrow/aesophia/tree/hagia.
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1.2. Blockchain

Blockchain is a distributed data structure resembling a singly-linked list. The main unit of a
blockchain is a block. Each block consists of a collection of events called transactions which
most often represent virtual token transfers and interactions with smart contracts. To keep
the integrity of the whole structure, every block stores the hash of the previous one making
it always clear which chain it belongs to and what its position is. Because of this connection,
changing, adding or removing any block in the middle requires updating all following blocks
as well, making forging chains virtually impossible.

The participants of the network are usually called peers, and those who produce blocks
are referred as miners. Since miners are responsible for keeping the blockchain alive, they
are compensated for their work by being credited with rewards in tokens and transaction fees
of other peers. These fees make denial-of-service attacks expensive and incentivise miners to
validate transactions and register them on the chain.

Figure 1.1: Blockchain visualisation

Each peer in the network is expected to keep at least some suffix of the chain, so they do
not need to rely on any centralised entity. Lack of a single point of truth makes malicious
peers, data races and hardware limitations a danger for the integrity of the whole system,
thus several algorithms to solve the problem of synchronisation have been invented. The
most popular ones are Proof of Work (PoW) [36] and Proof of Stake (PoS) [29]. The former
gains the security by forcing the peers to solve computationally hard tasks, while the latter
hands the right of producing new blocks to randomly chosen peers based on the number of
tokens they possess.

Such design aims to make the events on the chain immutable as soon as it is possible.
Owing to this, once a transaction has been placed on a blockchain, it is nearly impossible to
roll it back, because it would require convincing most of the participants that the change is
justified and shall not break any assumptions. Consequently, no authority is able to undo an
unwanted or misguided action, assuming the network is properly secured.

1.3. Smart contracts

A smart contract is a computer program that acts as a first-class citizen in the network.
It owns tokens, may interact with other contracts, perform spend transactions and accept
incoming transfers. Due to the fact it lives entirely on a blockchain, its behaviour is strictly
defined by its immutable source code.

The most prominent smart contract language is Solidity, which compiles to the Ethereum
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Virtual Machine (EVM). It is an imperative language highly influenced by C and JavaScript,
which supports some object-oriented programming features. The EVM is a classical stack
machine which additionally provides operations for blockchain interaction.

Smart contracts allow making actual agreements between parties. As soon as all the
participants reach a consensus that the source code of a contract describes the rules they
want to follow, they can deploy it onto the chain and interact with it. From this point on, the
contract shall respond to their queries, manage tokens and provide access to certain actions
realising its purpose independently and securely.

A basic example of such agreement would be a crowdfunding initiative: the contract could
accept and register incoming transfers and once the required amount is reached, pay it out
to the beneficiary. If the contract fails to gather a certain amount up to a defined point in
time2, it pays the tokens back to the supporters. The investors do not need to worry if the
rules are going to be respected, as the power of the network secures it firmly.

One of the concerns arising from allowing computationally universal algorithms to be
executed on the chain is that not every peer might be able to evaluate them entirely due to
resource limitations. While there are some attempts to statically put restrictions on the time
and memory consumption, in general case it is even impossible to tell if a given program ever
returns [57]. Owing to this, some additional mechanisms have to be introduced to eliminate
the risk of forcing peers to perform unrealistic computations.

One of the solutions involves so-called gas as a remedy to that problem [62]. Gas is a
resource that must be acquired by the caller before the contract is invoked. Each operation
of the virtual machine incurs a non-refundable gas cost. When the gas declared by the caller
is exhausted, execution stops and the transaction is reverted. The price of it and the costs of
particular instructions are adjusted so casual actions are affordable, but performing heavier
computations is costly.

The immutability of transactions gives a raise to a more problematic issue: if a bug is
spotted once the contract has been deployed, it cannot be fixed. The only way to get rid of it
is to create a new contract, migrate the state from the old one and make all the parties aware
of the issue3. So far errors in smart contracts have made significant harm to many entities
exposing them to very damaging loses [27, 42, 21, 52, 44]. Because of it, there is a great need
for testing and verifying contracts before they are let to the network.

1.4. æternity

The case study of this research is the æternity blockchain [2]. At the time of writing it is a
PoW chain implementing the BitcoinNG [19] protocol4. It is highly inspired by Ethereum and
implements smart contracts, a naming system [23, 34], oracles [53] and state channels [22, 45].
One of the things that distinguish æternity from other chains is a custom smart contract
programming language, Sophia, which compiles to a proprietary virtual machine called Fast
Aeternity Transaction Engine (FATE) [51]. It shall be the main subject of analysis in this
work.

The project was established in 2017 by Yanislav Malahov and funded in an ICO crowd-
funding [13]. The core code is written in Erlang with some key parts implemented also in

2Time in the context of blockchains is usually measured in blocks which, in contrary to seconds, is not
prone to synchronisation issues.

3Of course, one must keep in mind that they do not have to agree on that and nothing stops them from
abusing the contract.

4As of September 2021 there are works on a custom protocol called hyperchains [58], which was first
presented on 25th of August 2020
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Elixir and Rust. It is entirely open source and can be inspected in the official GitHub repos-
itory: https://github.com/aeternity.
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Chapter 2

The Sophia language

2.1. Language overview

Sophia is a domain-specific language that targets smart contracts on the æternity blockchain.
It belongs to the ML family being a statically and strongly typed functional language sup-
porting parametric polymorphism with fully developed type inference. It was created in 2017
by Ulf Norell, Hans Svensson, Erik Stenman and Tobias Lindahl as a part of the æternity core
node, and was later separated as a stand-alone tool equipped with a command line interface,
an HTTP service and an interactive REPL. For a first look at the syntax, an example of a
Sophia contract that serves as a factorial calculator is presented in Figure 2.1.

Figure 2.1: Factorial contract

1 contract Fac =
2 entrypoint
3 factorial : int => int
4 factorial(n) =
5 if(n == 0) 1
6 elif(n > 0) n * factorial(n - 1)
7 else 0

One of the key reasons for making it functional is the belief that this paradigm provides
decent security against common bugs [25]. The strict type system catches many domain-
related errors and referential transparency1 simplifies reasoning about blocks of code, allowing
the reader to analyse it without having to mind the context of the global variables. Moreover,
the reactive style of programming weaves in the transaction-driven nature of blockchains
exceptionally well.

The language is designed for the blockchain interaction. Among others, it provides in-
structions for checking the number of tokens transferred with the current call, the entity that
performed or originated2 the call, balance of any address (including own) and performing
spend transactions. There is also a rich library of cryptographic functions, data structure
algorithms and functional combinators [48].

1Technically speaking, Sophia is not entirely referential transparent due to some impure constructions
which shall be discussed later on.

2The difference between these two emerges when a contract is calling another contract. The caller is the
direct entity that initiated the call, while the origin is the peer who published the call transaction.
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Despite being a declarative language, Sophia does offer a limited control over a mutable
state. The programmer is allowed to define a special type state and is given a control over
a single variable of it which can be freely modified across the execution. There is a dedicated
entrypoint init which is called only once during the contract initialisation and sets up the
initial state. The state persists between calls and is the main way of storing information on
the chain by smart contracts.

Sophia divides functions by three categories: statefulness, payability and exposure to the
outer world:

• For a function to be allowed to directly or indirectly modify state of the contract3, it
must be declared with the stateful keyword. This restriction effectively brings back
the benefits of immutability and purity. Non-stateful functions can read the state freely,
though.

• A function that is payable is allowed to be called along with a token transfer to the
contract. Making it explicit can prevent accidental spends by calling an entrypoint that
is not prepared to handle the income properly.

• As for exposure, functions that are supposed to be called from the outside (that is, by
users or other contracts) have to be declared as entrypoints instead of functions. This
requirement allows keeping internal algorithms safe from unwanted calls, which could
be dangerous considering the fact that they might operate on some intermediate state
with a malformed structure.

For an example of a stateful contract please refer to the Figure 2.2 which presents a
factorial calculator that additionally counts and stores the number of its uses.

Figure 2.2: Counting factorial contract

1 contract Fac =
2 type state = int
3 entrypoint init() = 0
4

5 stateful entrypoint fac(n) =
6 require(n >= 0, "INVALID_ARG")
7 put(state + 1)
8 fac_internal(n, 1)
9

10 function fac_internal(n, acc) =
11 if(n == 0) acc
12 else fac(n - 1, acc * n)
13

14 entrypoint get_uses() = state

This document describes the 5.0.0 version of Sophia. However, at the time of writing 6.0.2
is released featuring introspection of other contracts’ byte code and dynamic creation of new
contracts. Although the presented type refinement system does work well with the recent
version, the new functionalities are not taken into account.

3That includes not only the state variable, but also the balance.
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2.2. Syntax

The structure of a Sophia program is split into three layers:

Top level

This is the root of a Sophia file. It contains directives for the compiler, include statements,
namespaces, contract interfaces and the main contract definition. The last one is the actual
body of the entity to be deployed onto the blockchain. Namespaces aid the hermetisation
and help keeping tidy structure by dividing logic into separate modules. Contract interfaces
contain only entrypoint signatures and possibly type definitions which are required for the
cross-contract interaction. A valid Sophia program requires exactly one contract definition
and any number of contract declarations and namespaces above it. At this level, the entities
are processed top-down making mutual recursion impossible.

The syntax of the top level can be visualised as presented in the Figure 2.3 (please refer
to the Appendix A for the full BNF grammar).

Figure 2.3: Top level syntax example

1 // Compiler version pragmas
2 @compiler >= 5.0.0
3 @compiler < 6.0.0
4

5 // External file loading
6 include "List.aes"
7

8 // Namespace
9 namespace Lib =

10 /* [Contract level] */
11

12 // Contract definition
13 contract Main =
14 /* [Contract level] */

Contract level

This is the place where the definitions of functions and custom data types are written. This
time, the entities are processed in a way that allows mutual recursion for functions, but
not for data types. In case of contracts, functions are divided into entrypoints (public)
and functions (private), and for namespaces there are respectively functions and private
functions. As stated before, each of these can be additionally equipped with payable and
stateful annotations.

Example syntax on this level is presented in the Figure 2.4.
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Figure 2.4: Contract level syntax example

1 // Type alias
2 type i = int
3

4 // Record
5 record point = {x : i, y : i}
6

7 // Variant type (ADT)
8 datatype closed_int = NegInf | Int(i) | PosInf
9

10 // Single-clause function definition
11 function f(x) =
12 /* [Function level] */
13

14 // Multi-clause function definition
15 function g : int => int // Type declaration is optional
16 g(0) = /* [Function level] */
17 g(n) = /* [Function level] */
18

19 // Stateful function. Only in contracts.
20 stateful function h(x : int) : int * int = // Returns a tuple of two ints
21 /* [Function level] */
22

23 // Stateful payable entrypoint. Only in contracts.
24 stateful payable entrypoint q() : unit = // Zero-tuple is referred as unit
25 /* [Function level] */
26

27 // Private function. Only in namespaces.
28 private function w() : closed_int =
29 /* [Function level] */
30

31 // Entrypoint declaration. Only in contract interfaces.
32 entrypoint e : (int, bool, string) => option(int * bool * string)

Function level

At the function level the actual algorithms are defined. The syntax is mostly compatible
with the Standard Meta-Language with some minor differences in the blocks’ layout, lambda
definitions and imperative constructions. The most notable change is the support for higher
arity functions, which is normally achieved with tuples or currying in other languages from
the ML family.

Figure 2.5 shows a selection of statements and expressions that may appear here.

14



Figure 2.5: Function level syntax example

1 require(state.size < 0, "STATE TOO LOW") // Data validation
2 let x = 10
3 let sqr(n) = n * n
4 if(state.size > x)
5 abort("STATE TOO BIG") // Throwing an error
6 else
7 let payload : list(int) = state.payload
8 switch(payload)
9 [] => 0

10 h::t =>
11 h * List.sum([a + 1 | a <- t]) // List comprehension

Figure 2.6 provides an example of a complete and compilable contract presenting the most
prominent features of the language. It shows a full program structure, interaction with other
contracts and some mock data validation. Again, for the full reference please consult the
appendix.

2.3. Type system

The type system of Sophia is a super-set of the Hindley–Milner’s [24, 35]. It offers first-
rank parametric polymorphism, higher order functions and full type inference. One of the
limitations is that Sophia requires all local variable definitions to be monomorphic and not
recursive, meaning that in some situations auxiliary functions must be extracted up to the
contract level.

Sophia supports other contracts as first-class values, meaning that they can be handled as
ordinary data. For instance, in the Figure 2.6 the main contract stores a list of references to
other contracts that are supposed to implement the IntegerService interface. Verification if
that is actually the case is an obligation of the user, since FATE does not type check external
contracts entirely, but only calls to their entrypoints.

The programmer is given an ability to describe custom data types in a manner similar to
other ML-like languages, like OCaml [11] or Elm [15]. There are three alternatives for it:

1. Type alias — created with the type keyword. It provides a different name for an existing
type and can always be inlined without breaking the semantics.

2. Record — created with the record keyword. This construction is also known as named
tuple or struct in other programming languages. It is a data structure that consists of
other data under named positions called fields.

3. Variant — created with the datatype keyword. Formally it is a non-generalised algebraic
data type, and allows forming disjoint unions and products of other types using named
constructors. It is heavily inspired by many modern programming languages like Haskell,
OCaml and Rust.

In contrary to the referred languages, Sophia does not support recursive type definitions,
making some constructions like trees inexpressible. However, there is a built-in inductive list
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data type, which follows the common for functional languages convention of being either an
empty list [] or a construction head::tail where head the first element and tail is the list
of the rest.

The lack of tree-like structures is partially mitigated by the built-in map data type. Since
trees are frequently used to implement data collections, hash tables serve more often than
not well enough for their use case. The values are flexible to be of any types, while keys are
limited not to be other maps, functions and polymorphic variables.

The types can be parameterised with other types. This is very useful for generalising
various patterns and providing more meaningful names for some complex domains. The
parameters must not accept further parameters, making higher-kinded types disallowed in
Sophia.

2.4. Potential issues

Despite being very defensive and restrictive, Sophia is not capable of checking several impor-
tant varieties of assumptions. Among others, there is no way to statically verify properties of

Figure 2.6: A more complex Sophia contract example

1 include "List.aes"
2

3 contract IntegerService =
4 entrypoint retrieveInts : () => list(int)
5

6 namespace Validation =
7 function validate(x : int) : bool =
8 if(x >= 0)
9 factorial(x) mod 2 == 0

10 else false
11

12 private function factorial(x) =
13 switch(x)
14 0 => 1
15 _ => x * factorial(x - 1)
16

17 contract Main =
18 type state = list(IntegerService)
19 entrypoint init() = []
20

21 stateful entrypoint register(service : IntegerService) : unit =
22 require(List.all(Validation.validate, service.retrieveInts()),
23 "INVALID_SERVICE")
24 put(service::state)
25

26 payable entrypoint get() =
27 require(Call.value > 0, "FEE_REQUIRED")
28 state
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values within the provided types, such as integer boundaries. This can be a significant issue
with contracts that manage and store tokens. While one can be sure that a variable represent-
ing the balance of some address is an integer, the compiler shall not guarantee that its value is
always non-negative. Overseeing such assumptions can expose contracts to exploitation and
in the worst case tokens theft.

Because of that, entrypoints require explicit validation of the incoming data. The type
checker does not have information about the expectations regarding it, so it will not remind
the user about the need of checking them. This becomes an issue when domains are restricted
with additional assumptions, what happens for example in the standard library for rational
numbers, which represents fractions using only positive integers. The library does not check
if the input data is well-formed for performance reasons. Therefore, if the provided utilities
are used on unverified data coming from outside of the contract, they may latently produce
invalid results.

It is also worth noting that FATE type checks data during execution only to some limited
extent. For instance, while it is able to distinguish a list from an integer, it will struggle
telling a difference between variants if their definitions are similar enough. Moreover, record
types are non-existent in FATE and are reduced to tuples by the compiler. Consequently, if
data is compatible on the byte code level, it may be coerced to a different Sophia type in an
unsafe way, leading to an unexpected interpretation of it in the other contract.

This also brings back the previously mentioned problem of data validation. For example,
let us consider a contract that utilises rational numbers and a variant type of a structure
similar to the respresentation of fractions. In such a case, both types may be mistaken with
each other without throwing a runtime error, but evaluating invalid computation instead.
It is visualised in the Figure 2.7, where the ChickenField contract is called with swapped
arguments. The real implementation of scale_chicken will thus handle InTheAir(-1, 0) as
a malformed fraction representing a negated division −1/0. This operation will succeed, but
shall return a senseless value. For example if spawn_chicken_with is called with distance
equal to 2, the result will be InTheAir(0, 0) instead of the expected InTheAir(-5, 0). Note
that the bug is not only about misuse of data, but also creation of malformed structures which
silently propagate across the runtime.
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Figure 2.7: Example of a bug breaking data assumptions

1 /* file: ChickenField.aes */
2 /* Contract mixing rationals and similarly structured variants */
3

4 // Standard library namespace for rational numbers
5 namespace Frac =
6 // A fraction is represented by either zero positive/negative pair of
7 // numerator and denominator
8 datatype frac = Neg(int, int) | Zero | Pos(int, int)
9

10 ...
11

12 contract ChickenField =
13 // Datatype describing coordinates of a chicken in several states
14 datatype chicken_location = InTheAir(int, int) | Heaven | Underground(int, int)
15

16 entrypoint scale_chicken(loc : chicken_location, ratio : Frac.frac) =
17 switch(loc)
18 Heaven => Heaven
19 InTheAir(x, y) =>
20 let x1 = Frac.round(Frac.div(Frac.from_int(x), ratio))
21 let y1 = Frac.round(Frac.div(Frac.from_int(y), ratio))
22 InTheAir(x1, y1)
23 Underground(_, _) => Heaven
24

25

26 /* file: ChickenCreator.aes */
27 /* Contract misusing the ChickenField contract */
28

29 // Interface for the ChickenField contract field
30 contract ChickenField =
31 datatype chicken_location = InTheAir(int, int) | Heaven | Underground(int, int)
32

33 // Declaration with wrong order of arguments
34 entrypoint scale_chicken : (Frac.frac, chicken_location) => chicken_location
35

36 contract ChickenCreator =
37 entrypoint spawn_chicken_with(cf : ChickenField, distance : int) =
38 // Improper call to the ChickenField contract
39 cf.scale_chicken(Frac.from_int(distance), InTheAir(-10, 0))
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Chapter 3

Liquid types

The purpose of a programming
language is to make it easier to express
the things that do make sense while
making it harder or impossible to
express things that do not make sense.

Ulf Norell

3.1. Motivation

Smart contracts are gaining more and more popularity these days and are being used to
manipulate assets, whose total value exceeds many other digital entities. With the increasing
importance comes increased demand on the quality and security. Due to this trend and the
limitations of human perception, there comes a need of using computers to accomplish these
necessities.

Static semantics have been used successfully in keeping programs safe in terms of the
execution stability and following the intentions of the programmer [30, 10, 55, 16]. On the
other hand there is a trade-off between safety and coding flexibility. One of the most common
arguments against strict static checks is that they require producing a lot of redundant code
at little benefit in return, slowing down the development.

While this discussion may be very heated for certain fields of computer science, the
blockchain topic is a very specific case. As said before, smart contracts are very vulnera-
ble to bugs for the reason of being impossible to fix after they are deployed. This effectively
shifts the priorities towards having more reliable code in the very first place, at the possible
costs of slower development. Indeed, losses caused by an error in a contract managing tokens
worth millions of dollars can be much more expensive than months of work invested in the
verification and testing.

There was research on the causes of the most common bugs in smart contracts in the
Ethereum network [20]. According to it, over 45% of bugs made in significant smart contracts
have been in fact consequences of either improper (or non-existent) data validation or holes in
the access control. About a fourth of those are marked as “highly severe”, over a half of which
are found to be “easy to exploit”. More generally, these issues involve relying on assumptions
that do not actually hold. Therefore, it is worth trying to look for a way of making these
assumptions more explicit and forcing the programmer to take care of them according to the
declared or inferred requirements.
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In this chapter liquid types are introduced as a remedy for the most common problems of
smart contracts. The aim is to enhance the existing type system of Sophia with a dedicated
context-dependent verification engine that shall relate not only to the overall domains of data,
but also express more arbitrary logical predicates over it. That means the programmer shall be
able to put assumptions on the values of certain variables by attaching boolean expressions to
their types. More than that, the system shall automatically verify if the requested properties
hold, and provide its own assertions on the internal functions provided by the language.

3.2. History and overview

The concept of liquid types comes from a broader term of refinement types which was intro-
duced in 1991 by Tim Freeman [18]. The original idea defines a refined type as a base type
enhanced with a predicate that must hold for every inhabiting value. For example, a type of
positive integers can be described as {ν : int|ν > 0} which is read as “a type of such integers
ν, that ν > 0”. This allows putting more precise restrictions on values and thus gives more
flexibility in making invalid states irrepresentable.

The name “liquid type” is an abbreviation for “logically qualified data type” and originates
in a 2008 paper by Patrick Rondon [47] which later became a part of his doctoral dissertation
[46]. Liquid types are a special case of a refined type system along with an inference algorithm.
That work serves as the main inspiration for this research, and the implementation of Hagia
is strictly based on the algorithms presented there. From now on, the terms “liquid type” and
“refined type” shall be used interchangeably.

3.3. Definition

Let Γ denote the environment from the standard Hindley-Milner type inference algorithm [24,
35]. For the purpose of inference of liquid types the liquid type environment Γ∗ is introduced.
The difference between these two is that in Γ∗ each variable has assigned a liquid type instead
of a base type, and it keeps an additional path predicate which is a conjunction of boolean
expressions describing assumptions derived from the context.

The following two definitions are reformulations of those from Rondon’s paper, being
slightly adjusted to match the types in Sophia.

Definition 3.3.1 A liquid type is a dependent type that consists of

• A base type B

• A value handle ν : B

• A predicate P which is a conjunction of boolean expressions called qualifiers

An expression e has type {ν : B|P} in the liquid environment Γ∗ when Γ ⊢ e : B and P[ν/e]
holds in Γ∗.

Additionally, there is a restriction on B to be simple enough to let P express reasonable
properties of it. In Hagia it is limited to be representable by either a primitive base type,
such as int or bool, or a type variable. Handling complex types, such as lists or records, is
described below.

Definition 3.3.2 A liquid function type consists of
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• A list of liquid arguments of form {x : T} where x is a variable and T is a liquid type

• A return type r where r is a liquid type defined in an environment extended with as-
sumptions derived from the arguments

It describes a function type, return type of which depends on the values of the arguments it
has been applied to. In this notation, a liquid argument {x : {x : τ |ρ}} can be abbreviated to
{x : τ |ρ}. In the current implementation, arguments cannot depend on each other. See the
subsection 6.1.7 for the discussion.

The presented types can be seen as a subset of Σ and Π types respectively from the
Martin–Löf dependent type theory [32]. The main difference are the restrictions on their
right-hand side, as liquid types allow a much tighter space of expressions to be put there. For
instance, a proper Π type may perform a conditional check on its argument and arbitrarily
determine the return type according to it, which the liquid functions considered here are not
capable of.

Since Sophia is more complex than the simplified ML analysed in Rondon’s work, the
following additional constructions are introduced:

Definition 3.3.3 A liquid list type consists of

• An element type T

• A length value handle ν : int

• A length predicate P which is a conjunction of boolean expressions

The list l is of type {ν : list(τ)|P} in Γ∗ when all of its elements are of type τ in Γ∗ and
Γ∗ ⊢ P[ν/length(l)]

In Hagia liquid lists may be referred as if they were integers. In such a case they shall be
cast to their lengths. For instance, the type {x : int|x > [2, 1, 3, 7]} can be interpreted as
{x : int|x > 4}.

Definition 3.3.4 A liquid record type consists of

• A base type B which is an identifier of a Sophia record type

• A list of liquid fields of form f : T where f is the name of a field of the record B and
the base type of T is the type of that field.

We conclude that Γ∗ ⊢ r : {B <: f1 : τ1, f2 : τ2} when Γ ⊢ r : B and each field fi has a
respective type τi in Γ∗.

Definition 3.3.5 A liquid variant type consists of

• A base type B which is an identifier of a Sophia variant type

• A list of liquid constructors of form C(args) where C is the name of a constructor of B
and args is a list of liquid types applicable to that constructor.

We conclude that Γ∗ ⊢ x : {B <: C1(a11 , a12)|C2(a21 , a22)} when Γ ⊢ x : B and x is defined
by any of the constructors Ci applied to respective parameters of types aij . Note that not all
constructors of B need to appear in the list. If that is the case, the liquid variant type is limited
only to the values created with the mentioned constructors.

Aside from the above, regular tuple and map constructions are allowed. They cannot be
equipped with logical qualifiers and disallow mutually dependent refinements of the underlying
types — see the subsection 6.1.7 for the discussion.
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3.4. Syntax

The type refinement system can work fine without any additional syntax. As long as the
existing constructions induce logical qualifications automatically, a certain amount of safety
is already provided. For example, division by zero is prevented as the system pre-defines the
type for the / operator to be ({n : int}, {d : int|d ̸= 0})→ {r : int|r = n/d} which enforces
the right operand not to be equal to zero (subsection 4.5.4 explains how it is constructed in
more details).

However, giving the programmer the ability of setting their own restrictions greatly ex-
tends the range of the properties that can be subjects of verification. As shown in the subsec-
tion 4.6.1, the space of inferrable judgements is limited to some pre-defined set of expressions
which may not always be as precise as needed. An example where this makes a significant
difference can be found in the subsection 5.2.4. Therefore, a new syntax is provided which fol-
lows the definitions from the section 3.3. For the BNF grammar please refer to the appendix,
section A.5.

Examples

• A positive integer: {x : int | x > 0}.

• A non-empty list of odd integers: {l : list({e : int | e mod 2 == 1}) | l > 0}.

• A function that computes maximum of two integers: ({a : int}, {b : int}) => {r
: int | r >= a && r >= b}

• A record r = {x : int} with x not equal to zero: {r <: x : {self : int | self
!= 0}}.

• An option type that cannot be None and where Some wraps a positive integer: {option(int)
<: Some({x : int | x > 0})}.

Figure 3.1 shows an example of a fully defined factorial function which utilises liquid
types. Note that in contrary to the previous implementations it does not consider the case of
a negative arugment, as the type signature effectively forbids it.

Figure 3.1: Factorial utilising liquid types

1 function
2 factorial : {n : int | n >= 0} => {r : int | r >= 1 && r >= n}
3 factorial(0) = 1
4 factorial(x) = x * factorial(x - 1)

3.5. Application

The proposed type refinement system can secure many assumptions, which can be used in
verification of numerous algorithms. Of out all, the integer boundary checking seems to be
one of the most important. Thanks to the list length predicates, it is possible to statically
verify if certain access at point is safe (that is, the index is not negative and is lesser than
the length of the list). Next, it can be used to prevent spends that are either negative or
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not affordable by the contract. In a more practical view, such qualifications may be used
in a decentralised exchange with a registry of balances represented as non-negative integers.
These benefits are shown by examples in the chapter 5.

Yet another feature that arises from the liquid types is the ability to assert whether some
point in code is reachable or not. Since Γ∗ stores a path predicate, one can put restrictions
or requirements on its satisfiability. This can serve for eliminating dead code and preventing
certain situations, like failing pattern matching. An example for that is shown in the chapter 5,
subsection 5.2.2. The benefit is not only the increased stability of the execution, but also
extended flexibility in access control.
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Chapter 4

Implementation

4.1. Inspiration and overview

The project utilises the existing Sophia compiler for the purposes of parsing and performing
the initial type checking, along with decorating abstract syntax tree with types. The liquid
type inference is a side step in the build pipeline — it can prevent the code from being passed
to the compiler of an intermediate representation, but it does not provide any input for it1.

Figure 4.1: Hagia–Sophia compilation pipeline

The implementation follows the algorithm proposed in Rondon’s paper [47], which is split
into three main phases:

Hindley–Milner type inference

This step is already done by the Sophia type checker, so its details are not discussed in this
document. What is important, it returns an AST decorated with type annotations on each
node. This information shall serve for the liquid typing initialisation in the next phase.

Constraint generation

The purpose of this process is to upgrade the types inferred in the previous step to their liquid
equivalents, and define constraints that must hold in order to make the liquid typing valid.
The generated constraints reflect dependencies between types and assert assumptions about
the control flow. Some constraints are fixed, such as these explicitly given by the user, and
some are yet unknown and are subject to the weakening in the next step.

1It does not need to be like that, however. Please refer to the discussion, subsection 6.1.8
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Constraint solving and iterative weakening

This is the process of satisfying the constraints. They are iteratively checked for validity and
if it is not the case, the inference relaxes the ones that can be adjusted, until the system is
consistent. If it manages to converge to a point where every constraint is satisfied, a liquid
typing is returned. Otherwise, an error is reported.

4.2. Used technology

As the existing Sophia compiler is written in Erlang, it is most convenient to use a program-
ming language that also runs on the Open Telecom Platform [1]. Of such languages, Erlang
and Elixir seem to be the most mature and since the latter requires some additional effort for
inter-operating with the current implementation, the former was chosen.

During constraint solving the help of an SMT solver is invaluable, so following Rondon’s
implementation of liquid types, Z3 by Microsoft Research [14] was chosen. Among many of its
advantages, the most convincing is the support of the SMT-lib language and a wide variety
of theories and abstractions that are useful for expressing judgements about the values in
Sophia. Furthermore, its performance has been proven to excel by numerous successes at
SMT-COMP competitions.

4.3. Preprocessing

Before the main algorithm is executed, the AST needs to be stripped of certain abstractions.
This is mostly due to the fact that the solving utility accepts only a tight range of expressions,
and it is much more convenient to analyse simpler code and in a more selective manner.
Therefore, several preprocessing techniques are introduced.

4.3.1. α-normalisation

Definition 4.3.1 An expression is in the α-normal form if it has no subexpressions that
introduce variables which are already bound in their context.

α-normalisation is therefore a process of elimination of variable shadowing. It can be
done by performing subsequent α-conversions [56], although in Hagia an error is thrown if a
name collision is detected. This is because shadowing can lead to hard to detect bugs if both
variables have the same type.

Without this process certain dependencies would become malformed or impossible to
express. Consider the following code:

1 let x = 1
2 let x = x + x // this is not recursive
3 x

There is a collision on x which can effectively confuse the solver; it would receive an
assertion that x = 1 ∧ x = x+ x which is not satisfiable. In fact, the former x and the latter
one are different variables and thus have to be reffered with different names. α-normalisation
is there to fix it by appriopriate renaming:
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1 let x_0 = 1
2 let x_1 = x_0 + x_0
3 x_1

4.3.2. A-normalisation

A-normalisation simplifies code by unpacking certain compound expressions and explicitly
assigning their parts to variables [17]. Most often, its purpose is to reduce the gap between
high-level abstract programs and their lower-level representations. An accurate definition has
been proposed by Matt Might in one of his articles [33]:

Definition 4.3.2 An expression is atomic if:

• it is guaranteed to terminate;

• it causes no side effects;

• it causes no control effects; and

• it never produces an error.

Definition 4.3.3 In A-Normal Form, all non-atomic (complex) expressions must
be let-bound, or else appear in tail position.

For instance, the following code

1 function factorial(n) =
2 if(n == 0) 1
3 else factorial(n - 1) * n

would be converted to

1 function factorial(n) =
2 let b = n == 0
3 if(b) 1
4 else
5 let v1 = n - 1
6 let v2 = factorial(v1)
7 v2 * n

Code in this form is much more convenient to analyse because every non-jumping inter-
mediate expression is named. This provides the refiner with handles to all necessary parts of
the program, allowing it to refer them independently. The semantics are entirely preserved
during A-normalisation.

4.3.3. Purification

This step is unavoidable due to the impure nature of Sophia, which does not weave into
Rondon’s algorithm very well. Furthermore, mutable state is not supported by the purely
declarative SMT solver language. As stated in the chapter 2, smart contracts do process an
explicit mutable state along with some additional variable properties like balances, remaining
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gas and so on. This applies not only to the main contract, but also remote ones. Thus, the
aim is to convert the code to an equivalent one which is free of these mechanisms.

Purification is the most convenient to perform on already A-normalised code due to the
assumption of purity of all sub-expressions in non-tail positions. This vastly reduces the cases
to cover, as it is no longer needed to check if, for example, arguments in a function application
interfere with the state. The process does not need to preserve the A-normal form though.
Since the A-normalisation process does not affect the purity, it can be triggered once again
after the purification.

The expected outcome should resemble the State monad [26] pattern, where each function
is additionally parameterised by an argument representing the incoming state of computation
and, if it is stateful, modified to return the new state aside from the original result. A similar
approach is applied to the built-in statements that are identified to be impure. This way the
system keeps track of the changes by making subsequent stateful operations introduce new
variables representing different stages of the chain state.

For the purpose of this algorithm the chain_state is introduced. It encapsulates every-
thing related to the blockchain that might be altered during the execution. In the current
implementation, it is limited to two variables:

• state — for tracking the internal state of the contract

• balance — for tracking the balance of the contract

This list can be further extended, if there is a need for a more detailed view on the inter-
action with the chain. For convenience, handles of these values can be stored in a dedicated
record type and passed along with the control flow. Although, Hagia keeps them separated
to simplify the process of constraint generation.

The purification process is itself stateful as it needs to keep the most actual state reference
and update it as needed. In case of Sophia, there are actually not many primitive operations
which are impure; thanks to the A-normalisation, the only cases that are needed to be treated
specially are:

• state — should be replaced with the variable representing the current state reference.

• put — replaced with () and the state reference is set to the argument.

• Chain.spend — sets the balance variable to the previous one reduced by the sent
amount. The expression has to be again typed as a non-negative integer.

• Contract.balance — replaced with the balance variable.

• Remote contract calls — the function call should be kept so the return value can be
computed (possibly with an updated liquid type of Call.value, if the refinement system
handles it). If the call value is set, then it should be subtracted from the balance before
the call, similarly to the Chain.spend. Furthermore, the initial balance of the called
contract can be safely assumed to be greater or equal to the sent value.

• Stateful function calls — since they may modify the state, they should return a tuple
with the updated state and the actual return value.

• Calls by a variable — there is no control if the underlying function is stateful or not, so
it is better to assume it is.
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• Calls to higher order functions — if there is an argument which may be a stateful
function, then the higher-order function should be considered stateful as well.

• Oracle and AENS specific utilities — if these object can be subjects of refinement, they
should be handled appropriately. Current implementation of Hagia does not consider
them, however.

The resulting code should be entirely pure and independent of these operations. The
semantics shall be preserved only in the purely computational sense — the outcome shall
not be actually suited to interact with the blockchain, but rather represent a more high-level
view on the execution. Figure 4.2 and Figure 4.3 present examples of code before and after
purification, respectively.

Figure 4.2: Code before purification

1 type state = int
2

3 stateful entrypoint f : () => address
4 entrypoint g : int => int
5

6 stateful entrypoint example(amount : int) : int =
7 let addr = f()
8 Chain.spend(addr, amount)
9 put(amount)

10 g(Chain.balance)

Figure 4.3: Code after purification

1 record chain_state =
2 { state : int,
3 balance : {b : int | b >= 0} }
4

5 entrypoint f : (chain_state) => chain_state * address
6 entrypoint g : (chain_state, int) => int
7

8 entrypoint example(cs0 : chain_state, amount : int) : chain_state * int =
9 let (cs1, addr) = f(cs0)

10 let cs2 = cs1{balance = cs1.balance - amount}
11 let cs3 = cs2{state = amount}
12 (cs3, g(cs3, cs3.balance))

In the examples, the stateful entrypoint f has been extended with an additional argument
carrying the representation of the incoming chain state and modified to return the updated
version of it. On the other hand, while g also receives the chain state, its return value
remains the same, because it is not stateful. The call to f updates the carried chain state
reference aside from assigning the original result value to the addr variable. The further calls
to Chain.spend, put and Chain.balance behave accordingly.
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4.4. The Γ∗ environment

The Γ∗ environment has been defined as an extension to the regular Γ environment by chang-
ing base types into their liquid equivalents, and attaching an additional path predicate. In
Hagia, however, there are some further features arising from the properties of Sophia. Among
them there are scope handles, current namespace and a registry of stateful entrypoints. More-
over, for the purpose of the initial assignment algorithm described in the subsection 4.6.1, a
collection of potentially relevant integers is stored.

4.5. Constraint generation

This phase does not perform any verification itself, but rather defines a number of statements
that must hold in certain environments. Aside from that, it is similar to the regular type
checking as it computes a liquid typing for the provided typed AST.

There are four kinds of such constraints:

• Well-formed constraint which indicates existence of a liquid type, ensuring that it is
properly initialised and the assigned qualifiers are correctly typed in a given environ-
ment. Denoted by Γ∗ ⊢ τ where Γ∗ is the environment and τ is a well-formed type.

• Subtype constraint which asserts that some type is a subtype of another in a certain
environment. Described using Γ∗ ⊢ τsub <: τsup meaning that τsub is a subtype of τsup
in Γ∗.

• Reachable constraint which ensures that some environment has a chance of being visited.

• Unreachable constraint which indicates an invalid environment which must be proven
never to occur.

Each of these describe certain promises that have to be fulfilled in order to find a valid
liquid typing. This section reviews the process of generating them from a typed AST.

4.5.1. Decorating types with logical qualifiers

This operation turns a base type into a corresponding liquid one. As provided by the syntax,
the user can specify liquid types manually and these remain unchanged. Otherwise, if a
non-liquid type is detected, it is enhanced with an appropriate refinement. Fresh predicates
created in this phase are represented by liquid templates as described in Rondon’s algorithm
[47]. A liquid template consists of a liquid type variable and a pending substitution. The
former serves as the identifier of a predicate to be resolved. Each time a substitution is
applied to a liquid template, it is accumulated in the pending substitution instead of altering
the underlying predicate, so it will not affect other occurences of that type.

Since the aim is to infer as strong judgements as possible, the positions of types must
be taken into account during the initialisation. When a type describes the output of some
computation, like for example the result of a function or a variable introduction, it is called
covariant. It should receive the whole space of possible qualifications and be therefore dec-
orated with a fresh liquid template. Otherwise, if a type is on an input position, such as a
function argument or a map key, it is defined to be contravariant. In contrary to the covari-
ant ones, these types receive empty qualifications which put no restrictions on the inhabiting
values. Consequently, simple types are decorated as follows:

30



1 fresh_template(variance) =
2 let predicate =
3 if variance == Covariant then fresh_liquid_var()
4 else ⊤
5 subst = []
6 return make_template(subst, predicate)
7
8 fresh_liquid_simple(variance, T) = −− covers primitives and type vars
9 return {ν : T|fresh_template(covariant)}

More than that, the variance switches each time an input position is entered, so an argu-
ment of a function which is an argument of a higher-order function shall be covariant instead.

1 switch_variance(Covariant) = Contravariant
2 switch_vairance(Contravariant) = Covariant
3
4 fresh_liquid_fun(variance, args, ret) =
5 let args1 = [ ({arg : fresh_liquid(switch_variance(variance), τ)})
6 | {arg : τ} ← args]
7 ret1 = fresh_liquid(variance, ret)
8 return args1→ ret1

The intuition here is to start with the least possible knowledge, while leaving an oppor-
tunity for learning new facts. Covariant types describe values that are built up across the
computation, so in order to represent full uncertainty the refiner considers all possible prop-
erties which may or may not apply. In contrast, there is no judgement to be put on the
incoming values, as they do not depend on the expression itself, but rather on its use in other
contexts. Because of this, the refiner must be prepared to receive anything in their place and
thus strip all the assumptions off.

The only exception to this rule are lists’ length predicates, because one can be always sure
that they will never be negative. In this special case, they are initialised to {ν : list(_)|ν ≥
0}.

1 fresh_liquid_list(variance, elem_t) =
2 let len_predicate =
3 if variance == Covariant then fresh_liquid_var()
4 else ν ≥ 0
5 subst = []
6 elem_lt = fresh_liquid(variance, elem_t)
7 return {ν : list(elem_lt)|make_template(subst, len_predicate)}

Example

For a reference of what happens in this process, let us consider the type of the List.map
function from the standard library, that applies a function over every element of a given list.
Assuming that a function is the first argument, the type inferred by the original type checker
is (α→ β, list(α))→ list(β), which after decoration is changed to

({x : α|ρ1} → {ν : β|⊤}, {l : list({ν : α|⊤})|l ≥ 0}})→ {ν : list({ν : α|ρ2})|ρ3}
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Where ρ1, ρ2 and ρ3 are fresh liquid templates and ⊤ is an empty predicate. The return
value of the incoming function has been initialised with an empty predicate, because it is on
a contravariant position. A similar thing has happened to the input list and its elements,
except that non-negative length has been assumed. The argument of that function is back
on a covariant position, so, just like the return value of List.map, has received a fresh liquid
template. In the end, ρ1 and ρ2 are resolved to ⊤, and ρ3 turns into ν = l to express that
List.map preserves the length. If the programmer had specified the predicates under the
liquid templates explicitly, they would have been left unaltered.

User-definable types

Type aliases are resolved and processed further down.

1 fresh_liquid_alias(variance, name) =
2 return fresh_liquid(variance, solve_name(name))

The identifiers of records are expanded to expose their underlying definitions and turned
into their liquid equivalents.

1 fresh_liquid_record(variance, T) =
2 let fields1 = [(field : fresh_liquid(variance, τ)) | (field : τ) ← T.fields]
3 return {T <: fields1}

Variants are unfolded similarly to records, but there is one more thing specific them; their
user-facing representation follows the description specified in chapter 3, but for constraint
generation they need to be preprocessed to simplify the splitting rules discussed in the sub-
section 4.5.5. As stated before, liquid variants restrict their domains not only by using liquid
types in parameters of constructors, but also allow banishing whole constructors from defining
the inhabiting values, regardless of their arguments. In this phase these two roles are split
by redefining liquid variants to utilise all their constructors and keep separate tag predicates
that assert that a given value may or may not have been created using given constructor.

1 fresh_liquid_variant(variance, T) =
2 let constructors1 =
3 [ constr([({arg : fresh_liquid(variance, τ)}) | {arg : τ} ← args])
4 | constr(args) ← T.constructors]
5 return {{ν : T|fresh_template(variance)} <: constructors1}

Tag predicates take form of a conjunction of (possibly negated) either equality against
nullary constructors or existential expressions stating that it is possible to find such argu-
ments, that applied to that constructor build a well-typed value. Although Sophia does not
support existential quantification, these qualifications do not escape internals of the inference
algorithm, so they do not conflict with the syntax.

More than that, missing constructors in user-defined liquid variants have their parameters
restricted to their minimal subtypes. It essentially means that each covariant argument is
initialised with a single qualification ⊥ (false) instead of a fresh template. This allows
expressing subtyping more accurately later on.
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1 fresh_liquid_dep_variant(variance, T, declared_constructors) =
2 let all_constructors = T.constructors
3 names_declared = [constr | constr(args) ← declared_constructors]
4 names_all = [constr | constr(args) ← all_constructors]
5
6 constructors_combined =
7 [constr(args) | constr(args) ← declared_constructors] +
8 [constr(args) | constr(args) ← all_constructors,
9 constr /∈ names_declared]

10
11 constructors1 =
12 [ constr([({arg : fresh_liquid(variance, τ)}) | {arg : τ} ← args])
13 | constr(args) ← constructors_combined]
14 is_not(constr, arity) =
15 if arity == 0 then return ν ̸= constr
16 else return ¬(∃args.ν = constr(*args))
17 tag_pred =
18 fold_left((∧), ⊤,
19 [ is_not(constr, length(args))
20 | constr(args) ← all_constructors,
21 constr /∈ names_declared])
22
23 return {{ν : T|tag_pred} <: constructors1}

For example, let us consider a type defined as datatype t = C1 | C2(int) | C3(int)
and its liquid subtype {t <: C2({ν : int|ν > 0})}. After decoration, it is restructured to

{{ν : t|ν ̸= C1 ∧ ¬(∃a1.ν = C3(a1))} <: C1|C2({ν : int|ν > 0})|C3({ν : int|⊥})}

That reads: “a type of such ν : t, that ν is not C1 nor can be constructed with C3, and if
it is built with C2 then its parameter is greater than zero”. While being more complicated, it
explicitly describes the meaning of the former notation. Furthermore, the falsified assumption
on the parameter of C3 causes the type {t <: C2({ν : int|ν > 0})} to be a subtype of
{t <: C2({ν : int|ν > 0})|C3({ν : int|⊥})}. Note that because of the tag predicate the
subtyping does not work the other way around — please refer to the subsection 6.1.2 for the
discussion.

4.5.2. Preparing the environment

Normally namespaces and contracts are processed in a way that allows mutual recursion
among the functions they contain, but not across the scopes. This does not necessarily reflect
the case of liquid inference, as the dependencies may flow in both directions. Thus, before the
functions’ bodies are examined, all signatures are refined and registered in the environment.
Custom type definitions have to be handled beforehand.

An important requirement that needs to be verified in this step is that no entrypoint
has assumptions on its input. This is crucial when user decides to declare liquid types on
their own, because none of the contravariant assertions would actually be checked at runtime.
Subsequently, the programmer might be wrongfully convinced that the function is safe from
receiving improper input.
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Formally speaking, in all entrypoints’ signatures, the contravariant types must not be
qualified by any logical statements that would exceed the guarantees made by the virtual
machine. The covariant ones are free of this restriction, because they serve as “promises”
of the contract, not “expectations”. Note that despite being theoretically an input of every
function, the state value always comes from inside of a contract and cannot be therefore set
out-of-domain by a malicious user. Because of that, it should be considered solely covariant
in this context.

4.5.3. Constraining global functions

For a given function f we define its global type Fg derived from the previous step, and its local
type Fl which emerges from the constraint generation of its body. The body is processed in
the environment Γ∗

a, which is extended by the arguments’ bindings and the assertions that
the arguments from the definition and the type declaration are in fact the same values.

Afterwards, appropriate constraints are produced. First, it is necessary to assert that both
Fl and Fg are well-formed. Next, there must be a subtyping relation between Fl and Fg, so
the implementation fits the declaration.

Example

For a simplistic example, let us consider a constant function that returns 1. However, the
programmer has specified its type just to return an integer that is greater than 0. The function
can be defined as follows:

1 function
2 pos_int : () => {r : int | r > 0}
3 pos_int() = 1

In this snippet, Fl is inferred to be () → {r : int|r = 1} and Fg is declared as () →
{r : int|r > 0}. The subtyping relation between these types holds, making the program
well-typed. Details on how Fl has been constructed are discussed in the subsection 4.5.4 in
this chapter. The verification of the subtyping is covered in the section 4.6.

4.5.4. Constraining expressions

Since Sophia has a very rich syntax, there are numerous cases to consider in this step. Because
of that, only the most principal, unique, or otherwise interesting have been selected. Needless
to say, many of the omitted cases can be easily derived from the presented ones. For a broader
view, please refer to the original implementation in the GitHub repository.

Variables

Constraining variables depends on whether their type is simple enough to make the equality
assertion meaningful. In the original implementation is_simple is defined to check if the type
is either a primitive or a type variable. In such a case, an equality assumption provides as
much information as the current knowledge about the underlying value, but can be expressed
with just a single qualification instead. Otherwise, the original type is inherited.
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1 constr_expr_var(Γ∗, name, type) =
2 let ltype = fresh_liquid(Γ∗, type) −− solves aliases by the way
3 baseT = base_type(ltype) −− `type` is not guaranteed to be base
4 if is_simple(baseT) then
5 return {ν : type|ν = name}
6 else
7 return type_of(Γ∗, name)

Integer arithmetic

The integer literal is one of the simplest cases, because every property of it can be concluded
directly from its known value.

1 constr_expr_int(Γ∗, n) =
2 return {ν : int|ν = n}

The arithmetic operations are typed in a way that allows the solver deriving the infor-
mation about their result directly from the operands. As an example, the division has been
chosen because it presents an additional requirement for the right-hand value not being equal
to 0.

1 constr_expr_op(Γ∗, "/") =
2 let opLV = fresh_id()
3 opRV = fresh_id()
4 return ({opLV : int}, {opRV : int|opRV ̸= 0})→ {ν : int|ν = opLV/opRV}

Function application

In Hindley–Milner, the type of a function application is inferred to be its codomain. However,
with liquid types it may vary depending on the values of the arguments. Consequently, an
appropriate substitution has to be applied. It can be done directly due to the A-normalisation,
which ensures that the arguments are atomic and thus simple enough to be used in qualifiers.
In order to ensure that the application is valid, a proper subtyping relation must hold between
the declared and provided arguments. Therefore, for each pair (ai, τi), where τi is the type
of the i-th argument from the function domain and ai is the inferred type of the respective
value, the Γ∗ ⊢ ai <: τi constraint is produced.

1 constr_expr_app(Γ∗, fun, argsApp) =
2 let (argsFT → retT) = constr_expr(Γ∗, fun)
3 argsT = constr_exprs(Γ∗, argsApp)
4 argsSubst =
5 [(argName, argVal) | ({argName : _}, argVal) ← zip(argsFT, argsApp)]
6
7 for ({_ : argT}, argFT) in zip(argsT, argsFT) do
8 constraint(Γ∗ ⊢ argT <: argFT)
9 return apply_subst(argsSubst, retT)
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For example, considering an expression 4 / 2, the system shall infer the type {ν : int|ν =
4/2} and generate the following constraints:

Γ∗ ⊢ {ν : int|ν = 4} <: {ν : int}
Γ∗ ⊢ {ν : int|ν = 2} <: {ν : int|ν ̸= 0}

While the first one does not introduce any useful information, the latter asserts that there
is no division by zero. Although the presented case is rather trivial, this requirement would
bring a lot of value if the right-hand operand was a variable.

if expression

The if expression is one of the most representative examples of the path predicate in use.
First, the condition is processed, but only for the purpose of constraints generation, as the
type is already known to be boolean. Then, the positive and negative cases are considered
in Γ∗ with the path predicate extended by the respective valuations of cond (the assert
function). In the end, the final type must be a supertype of what has been inferred for both
branches. The reachability constraints are included to forbid dead code.

1 constr_expr_if(Γ∗, cond, thenEx, elseEx, type) =
2 constr_expr(Γ∗, cond)
3 let Γ∗

t = assert(cond, Γ∗)
4 Γ∗

e = assert(¬cond, Γ∗)
5 thenT = constr_expr(Γ∗

t, thenEx)
6 elseT = constr_expr(Γ∗

e, elseEx)
7 τ = fresh_liquid(Γ∗, type),
8 constraint(Γ∗ ⊢ τ)
9 constraint(reachable(Γ∗

t))
10 constraint(reachable(Γ∗

e))
11 constraint(Γ∗

t ⊢ thenT <: τ)
12 constraint(Γ∗

e ⊢ elseT <: τ)
13 return τ

Pattern matching

Pattern matching is not covered in Rondon’s work, so it is explained in more details here.
The very first step is to extract constraints from the desctructed expression (the switched
variable).

1 constr_expr_switch(Γ∗, switched, alts, type) =
2 let switchedT = constr_expr(Γ∗, switched),
3 τ = fresh_liquid(Γ∗, type)
4 constr_cases(Γ∗, switched, switchedT, τ, alts)
5 constraint(Γ∗ ⊢ τ)
6 return τ

The alternatives are processed and combined into the return type similarly to if branches,
with the difference of using more advanced conditions, additionally capable of introducing
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variables. Each alternative has its body processed in the environment of a successful match
to the current pattern along with an assumption of failing matches in previous cases, as switch
considers the clauses top–down. An additional reachability constraint is generated in order to
disallow dead code. At the end, where no further alternatives are available, the environment
is asserted to be unreachable by a relevant constraint. This prevents a pattern-exhaustion
error and enforces the programmer to consider all possible cases.

1 constr_cases(Γ∗, switched, switchedT, returnT, alts) =
2 if alts.non_empty() then
3 let (pat =⇒ val) = alts.first()
4 (Γ∗

+, Γ∗
−) = match_to_pattern(Γ∗, pat, switched, switchedT)

5 valT = constr_expr(Γ∗
+, val)

6 constraint(Γ∗
+ ⊢ valT <: returnT)

7 constraint(reachable(Γ∗
+))

8 constr_cases(Γ∗
−, switched, switchedT, returnT, alts.drop_first())

9 else constraint(unreachable(Γ∗))

The split of the environments is done by the match_to_pattern function. The auxiliary
match_to procedure builds up a predicate describing a successful match and an environment
in which all pattern variables are bound. With this information, match_to_pattern creates a
succeeding environment with the assumptions applied and a failing one with no new variables,
but with the negation of the predicate asserted.

1 match_to_pattern(Γ∗, pat, expr, type) =
2 let (Γ∗

m, pred) = match_to(Γ∗, pat, expr, type, ⊤)
3 Γ∗

+ = assert(pred, Γ∗
m)

4 Γ∗
− = assert(¬ pred, Γ∗)

5 return (Γ∗
+, Γ∗

−)

During the predicate build-up there are three main kinds of patterns:

• Literal patterns — for example integers. They extend the matching predicate by an
assumption that the destructed expression has a given value.

• Variables — these do not add anything to the matching predicate, but instead extend
the environment with an appropriate variable binding.

• Complex patterns — for example tuples or lists. They require unpacking the component
data and sometimes verifying the general form of the destructed value. In case of a tuple,
the pattern matching proceeds by matching the projections against the respective sub-
patterns. In case of variant types, an additional constructor tag assertion is added. Lists
introduce mock int variables which derive their qualifications from length predicates
and are asserted to imply the value induced by the pattern.

It is assumed that match_to splits over possible kinds of patterns and dispatches across
functions as such:
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1 match_to_var(Γ∗, name, expr, type, pred) =
2 return (bind_var(name, type, Γ∗), pred)
3
4 match_to_int(Γ∗, n, expr, type, pred) =
5 return (Γ∗, expr = n ∧ pred)
6
7 match_to_tuple(Γ∗, pats, patsT, expr, pred) =
8 return fold_left(
9 fun((Γ∗

1, pred_1), (pat, patT, idx)) →
10 return match_to_pattern(Γ∗

1, pat, expr[idx], patT, pred_1)
11 end,
12 (Γ∗, pred),
13 zip(pats, patsT, [1..length(pats)])
14 )

To visualise the process, let us consider a simple pattern matching shown in the code
snippet below:

1 function f(m : option(int)) : int =
2 switch(m)
3 None => 1
4 Some(0) => 1
5 Some(n) => n

The constraints are generated as follows:

1. First, the destructed expression m comes with a (redundant in this case) well-formedness
constraint on its type:

Γ∗ ⊢ option(int)

.

2. The overall return type is declared to be well-formed:

Γ∗ ⊢ τ

3. In the first alternative, m is matched against a 0-arity constructor None. Hence, the
following constraint is created to assert that, if the match succeeds, the result fits in the
return type τ (created in the previous step):

Γ∗, m = None ⊢ {ν : int|ν = 1} <: τ

Besides that, the refiner requires this case to be achievable:

reachable((Γ∗, m = None))

4. The second alternative is triggered when the previous case has failed, m is Some and it
wraps 0. If all these hold, the result is again 1. A negated matching predicate from the
None case is attached to the path predicate of Γ∗ to express the first condition, even
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though it is actually redundant here. The m_unwrap variable is introduced as a handle
to the value under the Some constructor.

Γ∗, m_unwrap : int,¬(m = None), m_unwrap = 0, m = Some(m_unwrap) ⊢
{ν : int|ν = 1} <: τ

reachable((Γ∗, m_unwrap : int,¬(m = None), m_unwrap = 0, m = Some(m_unwrap)))

5. For the third alternative to be visited, the previous ones must have failed the match
and the constructor of m needs to be Some. Then a new variable n is introduced and
assigned to the value wrapped by m. The generated constraints are therefore:

Γ∗, m_unwrap : int,¬(m = None),¬(m_unwrap = 0 ∧ m = Some(m_unwrap)),

n : {ν : int|ν = m_unwrap}, m = Some(n) ⊢
{ν : int|ν = 1} <: τ

reachable((Γ∗, m_unwrap : int,¬(m = None),¬(m_unwrap = 0 ∧ m = Some(m_unwrap)),

n : {ν : int|ν = m_unwrap}, m = Some(n)))

6. Last, the switch expression is disallowed to have its patterns exhausted. Thus, the final
constraint is generated as follows:

unreachable((Γ∗, m_unwrap : int,¬(m = None),¬(m_unwrap = 0 ∧ m = Some(m_unwrap)),

n : {ν : int|ν = m_unwrap},¬(m = Some(n))))

4.5.5. Constraint splitting

The generated constraints may now consist of complex types which require an additional
decomposing logic for their validation. This logic can be in fact applied just once as an
intermediate step before the solving phase. Thus, the aim is to reduce the number of cases to
only those involving base types with logical refinements by splitting the compound ones into
parts.

This subsection describes the splitting algorithm only for the subtyping contraints, because
the strategy for well-formedness is very similar and neither reachability nor unreachability
require splitting. Moreover, assuming the correctness of the previous phases, the only cases
that are to be examined here are the ones in which every subtyping assertion is set between
liquid types of the same form. Therefore, the splitting algorithm goes as follows:

Liquid types

For two logically qualified types there is nothing to do since they are already in their simplest
form.

1 split_sub(constraint = Γ∗ ⊢ {νsub : B|ρsub} <: {νsup : B|ρsup}) =
2 return [constraint]
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Functions

For liquid function types Tsub = argssub → retsub and Tsup = argssup → retsup where Γ∗ ⊢
Tsub <: Tsup the splitting continues recursively on Γ∗, argssub ⊢ retsub <: retsup[argssup/argssub]
and argssup <: argssub (for each argument respectively). Note the subtyping relation is
swapped on args due to the variance switch when entering types on contravariant positions.
To make the subtyping of the codomains properly defined, the environment takes the argu-
ments into account and unifies them between both sides by applying a proper substitution.

1 split_sub(Γ∗ ⊢ argssub → retsub <: argssup → retsup) =
2 let args_constrs =
3 [ constr
4 | ({argsub : τsub}, {argsup : τsup})← zip(argssub, argssup),
5 constr ← split_sub(Γ∗ ⊢ τsup <: τsub)]
6 Γ∗

r = bind_args(argssup, Γ∗)
7 subst = [(argsub, argsup) | ({argsub : τsub}, {argsup : τsup})← zip(argssub, argssup)]
8 return args_constrs + split_sub(Γ∗

r ⊢ apply_subst(subst, retsub) <: retsup)

For example

Γ∗ ⊢ {x : int|x > 0} → {ν : int|ν > x} <: {y : int|y = 1} → {ν : int|ν ≥ y}

is split into

Γ∗ ⊢ {x : int|x > 0} <: {y : int|y = 1}
Γ∗, x : {ν : int|ν > 0} ⊢ {ν : int|ν > x} <: {ν : int|ν ≥ x}

Records and tuples

Record types and tuples are split element-wise. Here only pairs are presented, as other cases
are handled similarly.

1 split_sub(Γ∗ ⊢ τ lsub × τ rsub <: τ lsup × τ rsup) =
2 let constr_l = split_sub(Γ∗ ⊢ τ lsub <: τ lsup)
3 constr_r = split_sub(Γ∗ ⊢ τ rsub <: τ rsup)
4 return constr_l + constr_r

For example

Γ∗ ⊢ {ν : int|ν > 0} ∗ {ν : int|ν < 1} <: {ν : int|ν ≥ 0} ∗ {ν : int|ν ≤ 1}

is split into

Γ∗ ⊢ {ν : int|ν > 0} <: {ν : int|ν ≥ 0}
Γ∗ ⊢ {ν : int|ν < 1} <: {ν : int|ν ≤ 1}
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Variants

Variant types are split on the arguments of their constructors element-wise and emit additional
liquid types for keeping the tag predicates.

1 split_sub(Γ∗ ⊢ {{ν : T|ρsub} <: cssub} <: {{ν : T|ρsup} <: cssup}) =
2 let from_constructors =
3 [ constr
4 | (constr(argssub), constr(argssup)) ← zip(sort(cssub), sort(cssup)),
5 (argsub, argsup) ← zip(argssub, argssup),
6 constr ← split_sub(Γ∗ ⊢ argsub <: argsup)
7 ]
8 return [Γ∗ ⊢ {ν : T|ρsub} <: {ν : T|ρsup}] + from_constructors

For example

Γ∗ ⊢ t1 <: t2 where
t1 = {{ν : option(int)|ν ̸= None} <: None|Some({ν : int|ν > 0})}
t2 = {{ν : option(int)|⊤} <: None|Some({ν : int|ν ≥ 0})}

is split into

Γ∗ ⊢ {ν : int|ν > 0} <: {ν : int|ν ≥ 0}
Γ∗ ⊢ {ν : option(int)|ν ̸= None} <: {ν : option(int)|⊤}

Lists

Liquid lists split into subtyping on the element types and liquid integer types with qualifica-
tions gained from the length predicates.

1 split_sub(Γ∗ ⊢ {ν : list(τsub)|ρsub} <: list(τsup)|ρsup}) =
2 return [Γ∗ ⊢ {ν : int|ρsub} <: int|ρsup}, Γ∗ ⊢ τsub <: τsup]

For example

Γ∗ ⊢ {ν : list({νe : int|νe > 10})|ν > 1} <: {ν : list({νe : int|νe > 5})|ν > 0}

is split into

Γ∗ ⊢ {νe : int|νe > 10} <: {νe : int|νe > 5}
Γ∗ ⊢ {ν : int|ν > 1} <: {ν : int|ν > 0}

4.6. Solving

Having constraints generated across the AST, the final task is to find predicates for each liquid
variable, which, after substitution, satisfy the constraints and yield the strongest possible
guarantees. The heart of this algorithm is the iterative weakening which reduces the initial
predicates until a consistent model is found.
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4.6.1. Initial assignment

A liquid assignment A is a map from liquid type variables to predicates. For convenience,
information about the base type and the value handle identifier is stored there as well. Initially,
for each variable a wide space of logical sentences is provided — it does not matter if these
sentences are contradictory or make any sense at that point. Ideally it would be defnined
with all possible logical expressions that involve that variable, but it is much easier and most
often sufficient to start with a finite, pre-defined set of qualifiers.

Practically, this is the point where the well-formedness constraints do their role. As they
contain information about base types and the environments at the time of their creation, it
is possible to select qualifications that are well-typed and somehow relevant. Depending on
what the base type is, the following strategies are taken:

• For integers it is useful to apply all known comparison operators to other int variables
and list lengths in the context, as well as the integer literals that have been found
in the surrounding expressions. Arithmetic operations may additionally generate many
valuable samples. It is important to keep in mind that the number of generated qualifiers
will affect the performance, but on the other hand will enhance the expressiveness of
the inference. Nevertheless, it is almost always worth including comparison with 0 and
1.

• Booleans should have a chance to be proven both true and false and also depend on
comparisons of same-typed values from the context. Again, the greater space the lower
performance, but possibly better conclusions.

• Lists are treated similarly to integers.

• Variables for variant tags should be compared by equality and inequality with all of
their possible constructors and values of the same type from the environment.

• Type variables should be initialised with just equality and inequality with other values
of their types.

Example implementation of initialisation of refined integers:

1 init_assg(constraints) =
2 var A = Map.new()
3 for constr = Γ∗ ⊢ T in constraints
4 A := init_assg_1(A, constr)
5 end
6 return A
7
8 init_assg_1(A, Γ∗ ⊢ {ν : int|(κ.θ)}) =
9 let ints = [1, 0] + Γ∗.ints_so_far

10 int_vars = [x | x : τ ← Γ∗.var_env, τ = int ∨ τ = list(_)]
11 return [ 'bool_op(ν, r)
12 | x ← ints + int_vars,
13 y ← ints + int_vars,
14 int_op ← [(+), (−)]
15 r ← 'int_op(x, y)
16 bool_op ← [(=), (̸=), (>), (<), (≥), (≤)]
17 ]

42



4.6.2. Iterative weakening

At this point the assignment map should be filled with possibly mutually contradictory, un-
justified and seemingly random statements. The aim of this operation is to iteratively remove
those that break the subtyping constraints and find a consistent model that describes the
properties of the program as precisely as it can be expressed.

The algorithm consists of two parts: validity checking and predicate weakening. In each
step, it verifies if the system is already consistent using the is_valid function. If that is the
case, the solving is finished and the most recent assignment is returned as the solution. If
an invalid constraint is found, the weaken function is called to adjust the predicates under
related liquid variables by removing qualifications that falsify the constraint. Then, the whole
operation is repeated from the beginning with the new assignment.

1 solve(constraints) =
2 var A = init_assg(constraints)
3 while Some(c) = constraints.find(fun(c) not is_valid(A, c) end)
4 A := weaken(A, c)
5 end
6 return A

At this point, this process considers only subtyping constraints. Well-formedness does
not need validation, as the assignment has been initialised in a way that guarantees that
the predicates are not ill-typed. Reachability and unreachability may break, but they can
be verified once the subtyping is resolved because they do not contribute to the weakening
process.

Note that it does not necessarily prevent contradictions from occurring in the inferred
qualifications. If a constraint was created in a contradictory environment or describes a looping
or crashing computation, it will induce false assumptions and therefore false conclusions.
Thus, variables typed in such a way indicate computations without results.

The produced assignment should make all the well-formedness and subtype constraints
hold. The last thing to check is that all reachability and unreachability constraints have been
defined under satisfiable or unsatisfiable assumptions respectively. This effectively means
validating the path predicates of their environments.

Validtity checking and weakening

Subtyping constraints can be divided into two categories. A constraint Γ∗ ⊢ {ν : T |Psub} <:
{ν : T |Psup} is defined as wobbly if Psup is a liquid template, and can therefore be a subject
of weakening. Otherwise, that is when Psup is a fixed predicate, it is called rigid. The main
difference between these two is that the first one is flexible and may be adjusted in case it
breaks the assumptions. The latter, on the contrary, serves as a strict assertion that results in
an error if not satisfied. It appears when the supertype is placed on a contravariant position,
or has been explicitly qualified by the user.

For a subtyping constraint to be valid, the refiner must ensure that each value of the
subtype inhabits the supertype as well. For that to hold in the case of a liquid type, the
qualification of the supertype must be entirely derivable from the subtype’s. Formally said,
a constraint Γ∗ ⊢ {νsub : T |Psub} <: {νsup : T |Psup} is valid if and only if Γ∗ ⊢ Psub =⇒
Psup[νsup/νsub] which can be verified by the SMT solver. The subtyping relation on base
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types has been already handled by the Hindley–Milner inference at this point2. The checking
algorithm goes as follows:

1 pred_of(A, (κ.θ)) =
2 return apply_subst(θ, A(κ))
3 pred_of(A, P) =
4 return P
5
6 −− Wobbly
7 is_valid(A, Γ∗ ⊢ {νsub : B|ρsub} <: {νsup : B|ρsup = (κ.θ)}) =
8 let Psub = pred_of(A, ρsub)[νsub/νsup]
9 Psup = pred_of(A, ρsup)

10 Γ∗
1 = bind_var(νsup, B, Γ∗)

11 return SMT.holds(Psub =⇒ Psup)
12 −− Rigid
13 is_valid(A, Γ∗ ⊢ {νsub : B|ρsub} <: {νsup : B|Psup) =
14 let Psub = pred_of(A, ρsub)[νsub/νsup]
15 Γ∗

1 = bind_var(νsup, B, Γ∗)
16 if SMT.holds(Γ∗, Psub =⇒ Psup) then return true
17 else error("Contradiction")

In order to fix an invalid wobbly constraint, the predicate of the supertype needs to be
weakened to make the above implication hold. Let us assume that Psup appears as a liquid
template with κsup as the liquid variable and θ as the pending substitution. Thus, in line
with the previous notation, the weakened predicate under κsup should be redefined as

{q|q ← A[κsup],Γ∗ ⊢ Psub =⇒ q.θ}

.
A key observation showing the correctness of this step is that predicates under liquid

variables can only grow weaker. Therefore, if some qualifiers cannot be proven at one point,
they will not be derivable later as well. Because of that, it is fine to remove them from the
predicate as soon as they break the implication.

To visualise this mechanism, let us consider an expression if(x == 0) 2137 else 1 / x.
Among others, the following constraints should be produced:

Γ,¬(x = 0) ⊢ {ν : int|ν = x} <: {ν : int|ν ̸= 0}
Γ, x = 0 ⊢ {ν : int|ν = 2137} <: {result : int|κ}

The first one is rigid and enforces x not to be 0 because of the division. If it cannot
be proven in the given environment, the algorithm terminates with an error. In this case
however, the refiner finds it safe thanks to the path predicate (the ¬(x = 0) part).

The latter comes from the requirement that each branch of an if expression must be a
subtype of the whole if itself. Since the predicate was not determined during the constraint
generation, the supertype is qualified by a liquid template. If needed, the system performs
weakening on it, making it at least temporarily consistent. The inferred predicate is not

2In the 5.0.0 version of Sophia there is no actual subtyping, so in fact it is enough to check if the types
unify.
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presented here because it is strictly dependent on the initial assignment strategy, the environ-
ment and the overall state of the compuation, but for a reference a hypothetical qualification
result = 0 would be removed from κ, while result > −1 would be left.

The code for the weakening procedure goes as follows:

1 weaken(A, Γ∗ ⊢ {νsub : B|ρsub} <: {νsup : B|ρsup = (κ.θ)}) =
2 let Psub = pred_of(A, ρsub)[νsub/νsup]
3 Psup = pred_of(A, ρsup)
4 Γ∗

1 = bind_var(νsup, B, Γ∗)
5 P = [ qualifier
6 | qualifier ← Psup,
7 SMT.holds(Γ∗, Psub =⇒ apply_subst(θ, qualifier))
8 ]
9 return A[κ→ P]

4.6.3. SMT solver

Satisfiability Modulo Theory (SMT) has its roots in one of the most principal problems
of the theory of computation — the satisfiability (SAT) problem. SAT poses a question
whether there exists a valuation that would make a given logical formula hold. Because it is
a well-known NP-complete [12] problem, it is usually tackled with time-optimising heuristics
[50, 38]. SMT extends it by introducing additional theories that allow expressing statements
about more advanced models, such as natural numbers, functions and even compound data
structures like lists or trees.

In this work the Z3 SMT solver is used for checking if assumptions arising from the
generated constraints hold. Aside from that, it also serves as a tool for predicates simplification
and as a testing utility. Thanks to the SMT-lib standard [5], the whole algorithm is mostly
implementation-agnostic.

Because of the A-normalisation, most of expressions that appear in the inferred predicates
are suitable to be directly translated to the SMT-lib language. Beside simple data like integers
or booleans, Z3 supports additionally lists and custom algebraic data types with record-like
syntax. This almost entirely covers the Sophia type system.

The solver works fine with almost no configuration. It has to be initialised with definitions
of the types that are not provided by default, such as tuples and user-defined data types.
Variables that are compared only by equality, such as the polymorphic ones, are cast to
integers, so Z3 can handle them slickly without wrongfully taking advantage of finite domains,
which might apply to other types. Tag predicates assert only the constructor used to create
a certain value, so they are expressed using exists which quantifies over the arguments, or
plain equalities if the constructor does not take any parameters.

4.7. Postprocessing

At this point, all the constraints should be satisfied by the inferred predicates, some of which
may contain a lot of redundancy. For example, it is possible that the function computing an
absolute value gets the type {x : int} → {ν : int|ν ≥ 0∧ν ̸= −1∧ν > −1∧ν > x−1∧ν ≥ x},
which is essentially right, but the first and last qualifications are just enough to express the
very same thing. Moreover, some liquid variables may end up with contratictory assignments,
which can be then reduced to just a single false.
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This step is absolutely cosmetic and does not affect the correctness of the algorithm, but
it greatly simplifies the debugging and reasoning about the inferred judgements. Since it is
subjective what form of the predicate is cleaner, a simple heuristic has been applied. For each
assignment the following procedure is executed:

1. First, the qualifiers are sorted by their meaningfulness. It is measured by specificity and
visual appearance. For instance, equality is more meaningful than the lesser-or-equal
relation, as it alone tells more about the actual value. Accordingly, the inequality should
be considered the least meaningful, because it limits the type by the least. Regarding
the appearance, it generally looks better if the numbers are on the right side of the
binary operators. Also, the closer to 0 the integers are, the better the qualifier looks3,
so for instance x ≥ 0 is preferred over x > −1.

2. Next, all qualifiers are traversed from the least meaningful to the most. If any can be
proven from the others — it is removed. Performing this operation in the proposed order
eliminates the least meaningful qualifiers first, so the predicate x ≥ 1 ∧ x ≤ 1 ∧ x = 1
gets reduced to x = 1 instead of x ≥ 1 ∧ x ≤ 1. If the predicate is found to be not
satisfiable, it is replaced with a single qualification false.

3All statements in this paragraph are to be seen through a prism of personal preference and should be
treated solely as a suggestion.
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Chapter 5

Outcome

5.1. Summary

The presented type refinement system introduces a framework for implementing liquid types
for Sophia. It covers most of the language’s features focusing on the data processing and
arithmetics, providing also support for some blockchain-specific functionalities, such as state
management and contract balance tracking. If needed, the algorithm can be extended to
handle a greater range of expressions and judgements, taking advantage of the fact that most
of the potentially desired cases can be reduced to the already implemented ones. Hagia
therefore serves as a working proof-of-concept and an inspiration for utilising advanced type
systems in smart contract development.

5.2. Value and use cases

In this section several examples of use of liquid types are presented. They show how Hagia
eliminates arithmetic bugs, improper validation, implicit crashes and mistakes in logic. The
example contracts are simplified to focus on the actual problems, but one could easily imagine
them participating in more advanced decentralised systems. The error messages coming from
the refiner have been edited for readability, although the predicates preserve their meanings.

5.2.1. Example: list length

Liquid types have found their application by finding bugs in functions that had been written
as positive test cases for the project. These bugs most often turned out to be oversights,
which had been entirely ignored by the original type checker. The following example presents
a case of such a mistake. Let us consider the following attempt to define a function computing
the length of a given list (Figure 5.1).

Figure 5.1: List length — with a bug

1 function
2 len : {lst : list('a)} => {res : int | res == lst}
3 len(lst) = switch(lst)
4 [] => 0
5 _::t => len(t)
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If processed by Hagia–Sophia, the compiler yields the error:

Could not prove the promise at list_length.aes 2:3
arising from the assumption of triggering the 2nd branch of `switch`:

res == lst
from the assumption

res >= 0 && res == lst - 1

While it is indeed right that the result is greater or equal to zero, in the second switch
case the inferred assumption is that it is also lesser than the length of lst by 1, instead of
being equal to it. This not only indicates that something has gone wrong, but also suggests
what is the issue. In this case, the bug was the missing incrementation of the tail’s length, so
the following code compiles fine (Figure 5.2).

Figure 5.2: List length — fixed

1 function
2 len : {lst : list('a)} => {res : int | res == lst}
3 len(lst) = switch(lst)
4 [] => 0
5 _::t => len(t) + 1

5.2.2. Example: similar character oversight

This is not a very common kind of bug thanks to syntax highlighting featured by most of IDEs,
but it can happen in some setups, especially if the code is copied from external sources. Let
us consider a factorial function implemented for positive integers, as shown in the Figure 5.3.

Figure 5.3: Factorial — with a bug

1 function
2 factorial : {x : int | x > 0} => int
3 factorial(l) = 1
4 factorial(n) = n * factorial(n - 1)

The code may seem fine at first glance, especially considering the simplicity of the function
and its rather casual definition. However, if evaluated by Hagia the following error message
is shown:

Found dead code at 4:2 by proving that
!true && x == n && x > 0

never holds.

It turns out that the last clause of factorial is never going to be visited. The pattern n is
a variable, so it always matches. Hence, for the error to be right, the pattern l must catch the
argument regardless of its value. And this is indeed true, because it is not an integer literal
as expected, but a variable “ l ” instead, which in monospace fonts frequently looks almost
identical to the digit “1”. The fixed version of the contract in the Figure 5.4 compiles fine.
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Figure 5.4: Factorial — fixed

1 function
2 factorial : {x : int | x > 0} => int
3 factorial(1) = 1
4 factorial(n) = n * factorial(n - 1)

5.2.3. Example: spend-splitting contract

For a more blockchain-specific example, a simple spend-splitting contract can be considered
(Figure 5.5).

Figure 5.5: Spend splitting contract — no data validation

1 include "List.aes"
2

3 contract SpendSplit =
4

5 payable stateful entrypoint split(targets : list(address)) =
6 let value_per_person = Call.value / List.length(targets)
7 spend_to_all(value_per_person, targets)
8

9 stateful function
10 spend_to_all : (int, list(address)) => unit
11 spend_to_all(_, []) = ()
12 spend_to_all(value, addr::rest) =
13 Chain.spend(addr, value)
14 spend_to_all(value, rest)

The contract exposes an entrypoint which takes a list of addresses, splits the call value by
the number of receivers and sends each of them an even amount of tokens (keeping the rest
for itself). There are, however, several issues found by the refiner. An attempt to compile it
results in the following errors:

Could not prove the promise at spend_split.aes 13:7:
value =< $init_balance && value >= 0

from the assumption
true

Could not prove the promise at spend_split.aes 13:7
arising from an application of "C.spend_to_all" to its 2nd argument:

$balance_38 >= 0
from the assumption

true
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Could not prove the promise at spend_split 6:39
arising from an application of "(/)" to its right argument:

n_105 != 0
from the assumption

true

In other words:

1. In the 13th line the function does not check if the contract can afford the spend.

2. The next failure in the same line is caused by the broken promise of the balance being
always non-negative. This is a direct cause of the previous error, as Chain.spend reduces
the current balance by a given amount.

3. An insufficient-validation bug is present in the line 6, where the received amount is
divided by the length of the list. Since the list is allowed to be empty, there is a case
where this function crashes with a division-by-zero error.

In contrary to the previous example, this contract directly deals with the token flow,
making it more blockhcain-specific. In order to fix it, a few additional checks and assertions
are to be added (Figure 5.6). The improved implementation differs from the previous one by
an addtional require statement and a more precise type declaration. Thus, with just a little
tweaking, the code is fixed and is accepted by the refiner1.

Figure 5.6: Spend splitting contract — fixed

1 include "List.aes"
2

3 contract SpendSplit =
4

5 payable stateful entrypoint split(targets : list(address)) =
6 require(targets != [], "NO_TARGETS")
7 let value_per_person = Call.value / List.length(targets)
8 spend_to_all(value_per_person, targets)
9

10 stateful function
11 spend_to_all : ( {v : int | v >= 0 && v * l =< Contract.balance}
12 , {l : list(address)}
13 ) => unit
14 spend_to_all(_, []) = ()
15 spend_to_all(value, addr::rest) =
16 Chain.spend(addr, value)
17 spend_to_all(value, rest)

1The given example is a preview for the intended functionality of the refiner, and it is not entirely supported
yet. However, it is a part of the presented theory and can be implemented with some modifications of handling
the functions’ arguments. For a code snippet working with the current state of the project, please see the
appendix, section B.1
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5.2.4. Example: double token storage contract

Previous examples show situations where liquid types prevent uncontrolled crashing or arith-
metic errors. Although the bugs can make trouble indirectly if used as parts of some larger
systems, they themselves do not expose anybody to loses. To cover this case, this example
visualises a scenario where one of the peers can actually be a victim of a token theft, due to
a “small” oversight.

The presented in the Figure 5.7 contract implements a simple token storage which can
be used by two hard-coded accounts. Their balances are kept in state represented as a pair
of integers. Users can withdraw and store their tokens at any time with the withdraw and
store entrypoints. This example is quite simple, although in a real-life scenario its extension
could be a part of a staking contract used in the hyperchains protocol [58], for instance.

Figure 5.7: Double token storage contract — missing validation

1 contract DoubleStore =
2 type state = int * int
3 entrypoint init() = (0, 0)
4

5 stateful entrypoint withdraw(amount : int) =
6 let (s1, s2) = state
7 if(amount =< s1 && Call.caller == alice_address())
8 put((s1 - amount, s2))
9 Chain.spend(Call.caller, amount)

10 elif(amount =< s1 && Call.caller == bob_address())
11 put((s1, s2 - amount))
12 Chain.spend(Call.caller, amount)
13 else
14 abort("INVALID_WITHDRAW")
15

16 stateful entrypoint store() =
17 let (s1, s2) = state
18 if(Call.caller == alice_address())
19 put((s1 + amount, s2))
20 elif(Call.caller == bob_address())
21 put((s1, s2 + amount))
22 else
23 abort("INVALID_SOTRE")
24

25 function alice_address() =
26 ak_2nqfyixM9K5oKApAroETHEV4rxTTCAhAJvjYcUV3PF1326LUsx
27 function bob_address() =
28 ak_2CvLDbcJaw3CkyderTCgahzb6LpibPYgeodmCGcje8WuV5kiXR

The contract compiles fine with the original type checker. As expected, equipping Hagia
exposes missing data validation by throwing the following errors:
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Could not prove the promise at double_store.aes 9:7:
n_92 =< Contract.balance_0 && n_92 >= 0

from the assumption
amount == n_92 && amount =< s1 && Call.caller == ak_2nqf...

Could not prove the promise at double_store.aes 12:7:
n_179 =< Contract.balance_0 && n_179 >= 0

from the assumption
amount == n_179 && amount =< s1 && Call.caller == ak_2CvL...

Indeed, the withdraw function does not check if the requested amount is actually stored
in the contract, nor whether it is non-negative. A proper assertion makes the contract pass
the liquid type check, as shown in the Figure 5.8. From now on, the examples shall skip the
store entrypoint and the definitions of the hard-coded addresses.

Figure 5.8: Double token storage contract — addressing first Hagia errors

1 contract DoubleStore =
2 type state = int * int
3 entrypoint init() = (0, 0)
4

5 stateful entrypoint withdraw(amount : int) =
6 require(amount > 0 && amount =< Contract.balance, "INVALID_AMOUNT")
7 let (s1, s2) = state
8 if(amount =< s1 && Call.caller == alice_address())
9 put((s1 - amount, s2))

10 Chain.spend(Call.caller, amount)
11 elif(amount =< s1 && Call.caller == bob_address())
12 put((s1, s2 - amount))
13 Chain.spend(Call.caller, amount)
14 else
15 abort("INVALID_WITHDRAW")

This contract is now accepted by the refiner, although its code does not make any explicit
use of liquid types. Since Hagia comes with syntax for defining custom refinements, it is
worth utilising them if possible. One of the most obvious moves is to represent balances as
non-negative numbers as shown in the Figure 5.9.

52



Figure 5.9: Double token storage contract — putting explicit qualifications errors

1 contract DoubleStore =
2 type state = {x1 : int | x1 >= 0} * {x2 : int | x2 >= 0}
3 entrypoint init() = (0, 0)
4

5 stateful entrypoint withdraw(amount : int) =
6 require(amount > 0 && amount =< Contract.balance, "INVALID_AMOUNT")
7 let (s1, s2) = state
8 if(amount =< s1 && Call.caller == alice_address())
9 put((s1 - amount, s2))

10 Chain.spend(Call.caller, amount)
11 elif(amount =< s1 && Call.caller == bob_address())
12 put((s1, s2 - amount))
13 Chain.spend(Call.caller, amount)
14 else
15 abort("INVALID_WITHDRAW")

After the changes, the contract no longer compiles. The refiner throws an error and reports
the following issue:

Could not prove the promise at double_store.aes 12:7 :
s2_1 >= 0

from the assumption
s2_1 == s2_0 - amount && amount =< s1_0 && s1_0 >= 0 && s2_0 >= 0

The error message points out that the broken promise has been created in the twelfth
line, which is where put is used. It suggests that a possibly out-of-domain value is assigned
to the contract’s state. For that to be the case, a negative value must be assigned to one of
the variables representing the balances of the clients.

The variable s2_1 represents the updated balance of Bob. The refiner fails to prove its
non-negativity from a set of assumptions that suspiciously assert that the withdrawn amount
is not greater than s1_0, which is the initial balance of Alice. The bug is therefore in the line
11, specifically in the amount =< s1 check, which was supposed to verify if amount is lesser
or equal to s2 instead. This is a very common kind of mistake that usually comes from a bad
habit of copying similar chunks of code with the intent of applying synchronous modifications
to them.

This bug is actually very dangerous. One of the users can withdraw more tokens than
they have actually stored in the contract. Therefore, if Alice puts 100AE in it, Bob can freely
take it all, leaving Alice with no way of retrieving her funds.

Liquid types have therefore successfully prevented a faulty and easily exploitable contract
from being deployed. To fix it, the check has to be changed to verify the right value as it is
done in the Figure 5.10.
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Figure 5.10: Double token storage contract — fixed

1 contract DoubleStore =
2 type state = {x1 : int | x1 >= 0} * {x2 : int | x2 >= 0}
3 entrypoint init() = (0, 0)
4

5 stateful entrypoint withdraw(amount : int) =
6 require(amount > 0 && amount =< Contract.balance, "INVALID_AMOUNT")
7 let (s1, s2) = state
8 if(amount =< s1 && Call.caller == alice_address())
9 put((s1 - amount, s2))

10 Chain.spend(Call.caller, amount)
11 elif(amount =< s2 && Call.caller == bob_address()) // Fixed
12 put((s1, s2 - amount))
13 Chain.spend(Call.caller, amount)
14 else
15 abort("INVALID_WITHDRAW")

The solution was rather simple and did not require complicated refinements to reveal the
bug. Although it was sufficient just to assert non-negative balances in this case, another
important assumption is that both balances sum up to the balance of the whole contract.
This could catch a hypothetical oversight where the withdrawn funds are not subtracted at
all, for instance. In order to define it, the dependent products discussed in subsection 6.1.7
have to be implemented, and the final state declaration would look like in the Figure 5.11.

Figure 5.11: Double token storage contract — final

1 contract DoubleStore =
2 type state = {x1 : int | x1 >= 0} *
3 {x2 : int | x2 >= 0 && x1 + x2 == Contract.balance}
4 entrypoint init() =
5 require(Call.value == 0, "NON_ZERO_INIT_VALUE")
6 (0, 0)
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Chapter 6

Discussion

6.1. Future work

The implementation of liquid types for Sophia has not been entirely finished yet. There are
still some features of the language that are not covered or could have been handled more
appropriately. Aside from that, there is a range of possible improvements that could enhance
the performance and general functionality of the refiner. This section provides a selection of
problems and ideas that may be addressed during future works on Hagia.

6.1.1. Missing subtyping between empty product types

One of the yet unsolved issues is that empty product types can be described in various ways,
such that none of them is treated as equivalent to any of the others. This happens when false
qualifications are attached to different projections, for example when t1 = int× {ν : int|⊥}
and t2 = {ν : int|⊥} × int. Practically, t1 and t2 are the same (empty), but this will not be
solved by Hagia due to constraint splitting which reduces t1 <: t2 to {ν : int|⊥} <: int and
int <: {ν : int|⊥}. The second subtyping does not hold, making the whole check fail.

A solution for that would be not spliting product types at all (including domains of higher-
arity functions) and validating product subtypes as a whole instead. That would work, because
if a false projection is assumed, then regardless of its index every subtyping holds. Moreover,
this approach cooperates well with the liquid products proposed in the subsection 6.1.7, as it
considers mutual dependencies.

6.1.2. Missing subtyping between effectively same variant types

It happens that two variants with same sets of inhabitants are not treated as equivalent, but
instead there is a one-way subtyping relation between them. It occurs when one type has a
banished constructor and the other has it allowed, but it cannot be used due to unsatisfiable
qualifications of the parameters. For example, the following relation holds:

{option(int) <: None} <: {option(int) <: None|Some({ν : int|⊥})}

Unfortunately it does not work the other way around, despite the fact that both types
actually describe the same space of values, which in this case is just a single None. The cause
of this issue is that tag predicates are entirely detached from the context of constructors’
arguments, and the system does not see that it is actually impossible to create a value of the
second type using Some constructor. Thus, after splitting the reversed case, the refiner fails
to satisfy the tag predicate constraint
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Γ∗ ⊢ {ν : option(int)|⊤} <: {ν : option(int)|¬(∃x.ν = Some(_))}

A possible solution for that would be to enhance tag predicates with additional information
about the parameters, so the refiner shall infer that Some is excluded from the domains of
both types. However, if the problem introduced in the subsection 6.1.1 is addressed, a better
way to do it emerges. Since after the fix all projections are tied, tag predicates could be
replaced with dummy arguments of the constructors. They would be of liquid unit type with
a qualification stating whether the respective constructor is triggered. More than that, after
implementing liquid products from the subsection 6.1.7 it would be possible to assert that
only one constructor can be used to build a single value. Going back to the previous example,
the subtyping would be rewritten to

{option(int) <: None({is_none : unit|ρ1})|Some({is_some : unit|⊥}, int)} <:

{option(int) <: None({is_none : unit|ρ2})|Some({is_some : unit|ρ3}, {ν : int|⊥})}

where each ρi is a liquid template. Note that in this setup it is no longer needed to falsify
parameters of banished constructors, because they are considered in contradictory contexts
anyway. With that setup, the subtyping should work in both directions as expected.

6.1.3. Incremental solving

Z3 builds the solving environment incrementally. That means it keeps its state between
queries, which is reused for handling the subsequent assertions. If properly utilised, it can
have a great impact on the performance. One of the ways of interacting with this feature
are the push and pop instructions, which allow making snapshots of the current state and
returning to it afterwards.

Currently, Hagia makes little use of it; for instance, it always cleans up the whole context
and redefines the solving enviroment from scratch with every constraint. This behaviour could
be changed to respect the dependencies between environments. Except from some initial cases,
almost every constraint is created in an environment that is a direct extension of another one,
which could be reflected in the interaction with the solver.

One way to realise it is to build up a tree structure where the constraints are stored in
the nodes and vertices describe updates of the environments. The iterative weakening then
traverses through the graph, sending new assertions to the solver while moving to each child
node. When returning to the parent, the pop instruction is called to revert Z3 to a respective
state.

For example, considering a simple function involving an if expression:

1 function trim_neg(a : int) : {res : int | res >= 0} =
2 let b = a > 0
3 if(b) a else 0

The following set of constraints is generated (simplified for readability):

Γ∗
t ⊢ {ν : int|ν = a} <: {ν : int|ν ≥ 0}

Γ∗
e ⊢ {ν : int|ν = 0} <: {ν : int|ν ≥ 0}

where
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Γ∗ = a : int, b : {ν : bool|ν = a > 0}
Γ∗
t = Γ∗, b

Γ∗
e = Γ∗,¬b

After the optimisation, the following graph is built:

Γ∗

Γ∗
t ⊢ {ν : int|ν = a} <: {ν : int|ν ≥ 0} Γ∗

e ⊢ {ν : int|ν = 0} <: {ν : int|ν ≥ 0}

let b=a>0

assert(b) assert(¬b)

The environment Γ∗ can now be reused for handling both if branches. This prevents
many definitions and predicates being defined twice in the SMT, which saves a lot of the
solving time. The overall complexity of the iterative weakening is thus divided by the number
of constraints, which shall significantly affect the performance.

6.1.4. Relationship analysis for the initial assignment

The proposed solution for the initial assignment is rather naive as it assumes relationships
between all variables of the same type and combines them with all possible operations to
cover as many cases as possible. A similar strategy is applied to the integer literals, which
are picked very arbitrarly. It results in many irrelevant or otherwise absurd qualifiers, leaving
a quadratic number of statements to be examined. Not only does it affect the memory, but
more importantly it reduces the performance of the iterative weakening.

Some analysis to make this process more sensible could be performed. For instance, a
newly introduced variable could relate only to the variables that contributed to its definition.
Similar heuristics could be applied to integers.

6.1.5. Parallelisation

Erlang is mostly known for its efficient parallelism through processes. Making use of them
could bring a big improvement to the performance. A good place to start is the AST prepro-
cessing and constraint generation procedures, because they work only with either read-only
or append-only data.

More importantly, the iterative weakening, which is the most computationally intensive
part, can also take advantage of it. Independent processes could weaken the constraints
separately by removing the conflicting qualifiers on their own and apply the changes to the
assignment after each iteration. The parallelism does not break the correctness of the algo-
rithm — processing more constraints in a single round does not limit the progress in any way.

This optimisation requires a proper synchronisation. One of the strategies is to equip
all the wobbly qualifiers with indices, so they can be reported by the working processes and
removed by the supervisor after each iteration. This requires altering the underlying repre-
sentation of the assignments to use maps, proplists or some other indexed data collection
for representation of the predicates.
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The proposed strategy has not been tested, nor has any attempt of implementing it been
done in this project. Moreover, it might be challenging to combine it with incremental solving.
Although there are no guarantees, the idea is promising and should be considered during the
further development.

6.1.6. Liquid types for termination checking

Since the theory is capable of making judgements about values, it is able to identify some cases
of non-terminating function. With the size-change measure [31, 49] method, some additional
subtyping contraints could be generated to ensure the convergence. This idea has been already
implemented in LiquidHaskell [59] — a refinement type checker for Haskell.

The size measure is trivially definable for most Sophia types, especially the inductive ones.
Integers could be cast to their absolute values or limited to natural numbers with logical
qualifications. This gives an idea for a slick implementation of a simple totality checker,
which could prevent some infinite recursions and allow more flexibility in defining custom
refinements.

6.1.7. Liquid products with mutual dependencies

In product types (such as tuples, records and some cases of variants) the projections cannot
be declared to depend on each other. Fixing it would considerably increase the flexibility of
qualifications on complex data. This, for instance, would allow creating a type for well-formed
integer ranges, defined as tuples (n,m) : int× int, where n ≤ m. Another use-case is keeping
some additional information about the data, like a tuple of a list and an integer describing its
length for a constant-time access. It is worth noting that higher-arity functions may benefit
from that in a similar manner — in that case a linear dependency can be now achieved via
currying, however.

6.1.8. Making use of the qualifications during byte code generation

Liquid typing provides information that can be taken into account during the final compilation
phases. For instance, if a variable has been proven to contain a fixed value, it can be safely
inlined. Another example could be a situation where it is clear which constructor has been
used to create the value under a given variant variable. This could reduce the number of
unnecessary checks and thus save gas.

Furthermore, the qualifications on contravariant types of entrypoints do not need to be
disallowed. Since they are valid Sophia expressions, they can be used for automated generation
of data validation. The downside of this is the lesser transparency — implicit behaviours might
not look right to some programmers. An option worth considering is to make it adjustable
by the user with a flag or some other configuration method.

6.2. Alternative approaches

While liquid types are a reliable way of dealing with the common issues of smart contracts,
there are some alternatives that appear promising as well. Static verification of programs is
a broad field of computer science, so the presented solutions are only a selection of what can
be taken into account.
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6.2.1. Dependent type theory

As stated before, the proposed system can be seen as a simplified version of Martin-Löf’s de-
pendent type theory. Utilisation of full-featured dependent types in Sophia would drastically
increase the range of expressable properties, as it has little to no limitations on the qualifica-
tions being used and allows building very arbitrary data types. For instance, one could wrap
the type of some expression with option, but only if the computation has a chance to fail due
to the valuation of the variables in the context. This is inexpressible with liquid types, as it
requires having a variable base type.

On the other hand there are some drawbacks that one needs to consider. First, this theory
is much more complex than liquid types. Since types can be results of arbitrary computations,
the type inference might become very hard, if not undecidable, in some cases. Consequently,
the programmer may be forced to provide proofs for declared theorems on their own. Not
only does this work tend to be very tedious, but it also often requires a deep understanding
of the underlying theory.

Next thing is that with this theory it is not possible to rely on an SMT solver entirely.
The reason for it is that dependent types do not depend solely on logical formulations, but
rather on arbitrary data. Therefore, the system would need to interpret the code on its own,
which would have a negative impact on the performance.

Needless to say, one must keep in mind that this field of computer science is developing
very dynamically and is attracting more interest over time. There already exist some mature
implementations of dependent types such as Coq [6], Agda [39] and Idris [7]. The former is
mostly focused on theorem proving and has already found its application in smart contract
development [3]. The other two are general-purpose programming languages, which makes
them very promising for that as well.

6.2.2. Contract checking

Contract1 checking [8] is yet another approach to the automated verification. This theory
puts more focus on expressions than types, but the purpose is rather similar to liquid types
and both solutions have comparable expressiveness. For a bigger picture, there is a master’s
thesis [4] that provides a detailed comparison between Haskell Contracts Checker [60] and
LiquidHaskell [59].

6.2.3. Property-based testing

Property-based testing stays somewhere in the middle between unit testing and automated
theorem proving. The idea is to let the programmer express some logical properties of func-
tions and values, which serve then as a base for automatic test generation aiming to find
counter-examples for the given assumptions. One of the most famous implementations is
QuickCheck [9] which was originally created for verification of Haskell programs, and has
inspired similar tools (usually of the same name) for many other programming languages.

The approach is very different though. Most importantly, tests do not guarantee that the
given assumptions necessarily hold, in contrast to the already shown solutions. On the other
hand, they are much easier to manage by the programmer; they do not require actual deriva-
tion of proofs, which in many cases provides enough security at lower cost of maintenance.
Because of that difference, it is worth considering using both automated testing and a strong
type system simultanously, as they do not conflict with each other.

1In that theory the term “contract” has a different meaning and is not related to smart contracts.
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Chapter 7

Conclusions

Liquid types have shown to be a valuable extension to the type system of Sophia. The
automated inference of facts makes them an exceptionally convenient verification tool, as they
require a little additional effort from the programmer. More than that, the modifications of
the code they enforce are often needed anyway — for example data validation in entrypoints
is a mandatory part regardless of the liquid types1.

The provided expressiveness is very often enough to catch most common errors. As shown
in the chapter 5, restricting integers to fit in certain boundaries effectively prevents crashes
on arithmetics and data queries, while putting static checks on balances serves for the token
flow control very well. The proposed solution for pattern matching greatly helps to find
unreachable code and to prevent implicit crashing points.

Since liquid types contribute to the syntax, they improve the overall appearance of con-
tracts. When a reviewer or a potential client inspects the source, they can relate to the
assertions provided, making the program more trustworthy, as logical qualifications can be
utilised to describe many invariants. This not only aids the reasoning about the code and
helps debugging, but also brings a marketing value by incentivising clients to use more verified
products.

1On the other hand, the qualifications could be used to autogenerate validation of entrypoints implicitly.
See the discussion, subsection 6.1.8
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Appendix A

Full Sophia syntax

A.1. Top level

1 File ::= Block(TopDecl)
2
3 TopDecl ::= ['payable'] 'contract' Con '=' Block(Decl)
4 | 'namespace' Con '=' Block(Decl)
5 | '@compiler' PragmaOp Version
6 | 'include' String

A.2. Contract level

1 Decl ::= 'type' Id ['(' TVar* ')'] '=' TypeAlias
2 | 'record' Id ['(' TVar* ')'] '=' RecordType
3 | 'datatype' Id ['(' TVar* ')'] '=' DataType
4 | (EModifier* 'entrypoint' | FModifier* 'function') Block(FunDecl)
5
6 FunDecl ::= Id ':' Type
7 | Id Args [':' Type] '=' Block(Stmt)
8
9 PragmaOp ::= '<' | '=<' | '==' | '>=' | '>'

10 Version ::= Sep1(Int, '.')
11
12 EModifier ::= 'payable' | 'stateful'
13 FModifier ::= 'stateful' | 'private'
14
15 Args ::= '(' Sep(Pattern, ',') ')'

A.3. Types

1 TypeAlias ::= Type
2 RecordType ::= '{' Sep(FieldType, ',') '}'
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3 DataType ::= Sep1(ConDecl, '|')
4
5 FieldType ::= Id ':' Type
6 ConDecl ::= Con ['(' Sep1(Type, ',') ')']
7
8 Type ::= Domain '=>' Type
9 | Type '(' Sep(Type, ',') ')'

10 | '(' Type ')'
11 | 'unit' | Sep(Type, '*')
12 | Id | QId | TVar
13
14 Domain ::= Type
15 | '(' Sep(Type, ',') ')'

A.4. Function level

1 Stmt ::= 'switch' '(' Expr ')' Block(Case)
2 | 'if' '(' Expr ')' Block(Stmt)
3 | 'elif' '(' Expr ')' Block(Stmt)
4 | 'else' Block(Stmt)
5 | 'let' LetDef
6 | Expr
7
8 LetDef ::= Id Args [':' Type] '=' Block(Stmt)
9 | Pattern '=' Block(Stmt)

10
11 Case ::= Pattern '=>' Block(Stmt)
12 Pattern ::= Expr
13
14 Expr ::= '(' LamArgs ')' '=>' Block(Stmt)
15 | 'if' '(' Expr ')' Expr 'else' Expr
16 | Expr ':' Type
17 | Expr BinOp Expr
18 | UnOp Expr
19 | Expr '(' Sep(Expr, ',') ')'
20 | Expr '.' Id
21 | Expr '[' Expr ']'
22 | Expr '{' Sep(FieldUpdate, ',') '}'
23 | '[' Sep(Expr, ',') ']'
24 | '[' Expr '|' Sep(Generator, ',') ']'
25
26 | '[' Expr '..' Expr ']'
27 | '{' Sep(FieldUpdate, ',') '}'
28 | '(' Expr ')'
29 | Id | Con | QId | QCon
30 | Int | Bytes | String | Char
31 | AccountAddress | ContractAddress
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32 | OracleAddress | OracleQueryId
33
34 Generator ::= Pattern '<-' Expr
35 | 'if' '(' Expr ')'
36 | LetDef
37
38 LamArgs ::= '(' Sep(LamArg, ',') ')'
39 LamArg ::= Id [':' Type]
40
41 FieldUpdate ::= Path '=' Expr
42 Path ::= Id
43 | '[' Expr ']'
44 | Path '.' Id
45 | Path '[' Expr ']'
46
47 BinOp ::= '||' | '&&' | '<' | '>' | '=<' | '>=' | '==' | '!='
48 | '::' | '++' | '+' | '-' | '*' | '/' | 'mod'
49
50 UnOp ::= '-' | '!'

A.5. Liquid types

1 LiquidType ::=
2 // Liquid type
3 '{' Id ':' SimpleType '|' Predicate '}'
4 | '{' Id ':' SimpleType '}'
5 // Liquid function
6 | DepDomain '=>' LiquidType
7 // Liquid list
8 | '{' Id ':' 'list' '(' LiquidType ')' '|' Predicate '}'
9 | '{' Id ':' 'list' '(' LiquidType ')' '}'

10 // Liquid record
11 | '{' TypeId '<:' Sep(DepFields, ',') '}'
12 // Liquid variant
13 | '{' TypeId '<:' Sep(DepConstructor, '|') '}'
14 // Tuples
15 | 'unit' | Sep(LiquidType, '*')
16 // Type application
17 | Type '(' Sep(LiquidType, ',') ')'
18 // Parens
19 | '(' LiquidType ')'
20 // Coercion
21 | Type
22
23 SimpleType ::= Id | TVar
24
25 TypeId ::= Id | QId
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26
27 Predicate ::= QualExpr | QualExpr '\&\&' Predicate
28
29 QualExpr ::=
30 Bool
31 | Id
32 | QualExpr BinOp QualExpr | UnOp QualExpr
33
34 DepField ::= Id ':' LiquidType
35 DepConstructor ::= (Con | QCon) '(' Sep(LiquidType, ',') ')'
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Appendix B

Sophia examples

B.1. Fixed spend splitting contract

The following contract passes the refined type check in the referred implementation. It is a
bit underwhelming compared to the one shown in the Figure 5.6, as it does not make the
spend_to_all function entirely crash-resistant. What it improves, is making the error more
explicit with a better message. Moreover, it effectively prevents the division by zero which
could occur in the contract shown in the Figure 5.5.

1 include "List.aes"
2
3 contract SpendSplit =
4 payable stateful entrypoint split(targets : list(address)) =
5 require(targets != [], "NO_TARGETS")
6 let value_per_person = Call.value / List.length(targets)
7 spend_to_all(value_per_person, targets)
8
9 stateful function

10 spend_to_all : ({v : int | v >= 0}, list(address)) => unit
11 spend_to_all(_, []) = ()
12 spend_to_all(value, addr::rest) =
13 require(value < Contract.balance, "spend_to_all: insufficient funds")
14 Chain.spend(addr, value)
15 spend_to_all(value, rest)
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